ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-09-23
    Description: The influence of water vapor on bentonites or smectites is of interest in many different fields of applied mineralogy such as nuclear-waste sealing or casting in the foundry industry. The water vapor affects the smectite surface and perhaps its structure probably leading to mostly unfavorable changes in its properties. In this first part of the present study, the influence of hot water vapor (200°C) on the physicochemical and mineralogical properties of smectite-group minerals was studied. After the steam treatment, turbidity measurements, methylene-blue sorption, water adsorption, and cation exchange capacity (CEC) were measured on both untreated and treated samples. Mineralogical changes were monitored by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) was used to measure O, Al, and Si. Only a few parameters showed differences between the untreated and vapor-treated samples. Sedimentation volumes (SV) decreased following the treatment. As shown by XRD and XPS, the crystalline structure of smectite remained unaffected by the steam treatment. Equivalent sphere diameters (ESD) were not affected systematically by the steam treatment. Differences in CEC values between untreated and treated samples were observed, but only for smectites with monovalent interlayer cations. From the variety of different measurements the conclusion of the present study was that steam treatment changes the charge properties at or near the smectite particle surface.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-05-10
    Description: Bentonite-bonded molding sand is one of the most common mold materials used in metal casting. The high casting temperatures cause dehydration and alteration of the molding sand, thereby degrading its reusability. Neutron radiography and neutron diffraction were applied to study these processes by using pure bentonite-quartz-water mixtures in simulation casting experiments. The aim of the experiments was to compare the dehydration behavior of raw and recycled mold material in order to assess possible causes of the limited reusability of molding sands in industrial application. Neutron radiography provided quantitative data for the local water concentrations within the mold material as a function of time and temperature. Dehydration zones, condensation zones, and areas of pristine hydrated molding sand could be established clearly. The kinematics of the zones was quantified. Within four cycles of de- and rehydration, no significant differences in water kinematics were detected. The data, therefore, suggest that the industrial handling (molding-sand additives and the presence of metal melt) may have greater effects on molding-sand reusability than the intrinsic properties of the pure bentonite–quartz–water system.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...