ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry Central  (2)
  • 1
    Publication Date: 2014-01-15
    Description: Background: Yakuchinone A has a plethora of beneficial biological effects. However, the pharmacokinetic (PK) data of yakuchinone A still remain unknown so far. Furthermore, the quantification of yakuchinone A in biological samples has not been reported in the literature. Therefore, in the present study we aimed to develop a new method for the fast, efficient and accurate assessment of yakuchinone A concentration in plasma, as a means for facilitating the PK evaluation of yakuchinone A. Results: A liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method was developed and validated for the determination of yakuchinone A in rat plasma. Mass spectrometric and chromatographic conditions were optimized. Plasma samples were pretreated by protein precipitation with methanol. LC separation was performed on a Phenomenex Luna C18 column with gradient elution using a mobile phase consisting of methanol-water containing 0.5 mM formic acid (HCOOH) at a flow rate of 0.28 mL/min. ESI-MS spectra were acquired in positive ion multiple reaction monitoring mode (MRM). The precursor-to-product ion pairs used for MRM of yakuchinone A and yakuchinone B were m/z 313.1 [rightwards arrow] 137.0 and 311.2 [rightwards arrow] 117.1, respectively. Low concentration of HCOOH reduced the ion suppression caused by matrix components and clearly improved the analytical sensitivity. Yakuchinone A showed good linearity over a wide concentration range (r 〉 0.99). The accuracy, precision, stability and linearity were found to be within the acceptable criteria. This new method was successfully applied to analyze the rat plasma concentration of parent yakuchinone A after a single oral administration of SuoQuan capsules. Low systemic exposure to parent yakuchinone A was observed. Conclusion: The proposed method is sensitive and reliable. It is hoped that this new method will prove useful for the future PK studies.
    Electronic ISSN: 1752-153X
    Topics: Chemistry and Pharmacology
    Published by Chemistry Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-01
    Description: Background: Galangin (3,5,7-trihydroxyflavone) is present in high concentrations in herbal medicine such as Alpinia officinarum Hance. Galangin shows multifaceted in vitro and in vivo biological activities. The number and position of hydroxyl groups in this molecule play an important role in these biological activities. However, these hydroxyl groups undergo glucuronidation and sulfation in in vitro assay system. Moreover, the systemic exposure to galangin after dosing in animals and/or humans remains largely unknown. Thus it is not clear whether the galangin exists in the body at concentrations high enough for the biological effects. Furthermore, the metabolite identification and the corresponding plasma pharmacokinetics need to be characterized. Results: Two LC-MS/MS methods were developed and validated and successfully applied to analyze the parent drug molecules and aglycones liberated from plasma samples via β-glucuronidase hydrolysis. Our major findings were as follows: (1) the routes of administration showed significant influences on the systemic exposure of galangin and its metabolites. (2) Galangin was preferentially glucuronidated after p.o. dosing but sulfated after i.v. medication. (3) Kaempferol conjugates were detected demonstrating that oxidation reaction occurred; however, both glucuronidation and sulfation were more efficient. (4) Oral bioavailability of free parent galangin was very low. Conclusions: Systemic exposure to galangin and its metabolites was different in rat plasma between oral and intravenous administration. Further research is needed to characterize the structures of galangin conjugates and to evaluate the biological activities of these metabolites.Graphical abstractGalangin was preferentially glucuronidated after p.o. dosing but sulfated after i.v. medication.
    Electronic ISSN: 1752-153X
    Topics: Chemistry and Pharmacology
    Published by Chemistry Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...