ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: 9783030338282 (e-book)
    Description / Table of Contents: This book provides a comprehensive summary of research to date in the field of stable iron isotope geochemistry. Since research began in this field 20 years ago, the field has grown to become one of the major research fields in "non-traditional" stable isotope geochemistry. This book reviews all aspects of the field, from low-temperature to high-temperature processes, biological processes, and cosmochemical processes. It provides a detailed history and state-of-the art summary about analytical methods to determine Fe-isotope ratios and discusses analytical and sample prospects.
    Type of Medium: 12
    Pages: 1 Online-Ressource (xii, 360 Seiten) , Illustrationen
    ISBN: 9783030338282 , 978-3-030-33828-2
    ISSN: 2364-5113 , 2364-5105
    Series Statement: Advances in isotope geochemistry
    Language: English
    Note: Contents 1 Introduction and Overview 1.1 Geochemistry of Fe 1.1.1 Fe Redox 1.2 Stable Isotope Geochemistry 1.2.1 Nomenclature 1.2.2 Isotopic Fractionation 1.2.3 Processes that Produce Isotopic Variations 1.3 Overview of the Chapters References 2 Analytical Methods 2.1 Introduction 2.2 Iron Purification Methods 2.3 Mass Spectrometry 2.3.1 Beginnings of Fe Isotope Analysis 2.3.2 Multi Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) 2.3.3 Modern MC-ICP-MS Using Pseudo High Mass Resolution Methods 2.3.4 Matrix Effects and Instrumental Mass Fractionation Corrections 2.4 In Situ Techniques 2.5 Summary References 3 Fe Isotope Fractionation Factors 3.1 Introduction 3.2 Deriving Fe Isotope Fractionation Factors from First Principles 3.3 Experimental Methods for Measuring Fe Isotope Fractionation Factors 3.3.1 The Role of Sorption in Isotope Exchange 3.4 Equilibrium Fractionation of Fe Isotopes: Working Toward a Unified Set of Fractionation Factors 3.4.1 Aqueous Fe Species 3.4.2 Aqueous Fe Mineral Fractionation 3.5 Biological Experiments 3.5.1 Fe Oxidizing Experiments 3.5.2 Magnetotactic Bacteria 3.5.3 Fe Reducing Experiments 3.6 Preferred Set of b-Values 3.7 Summary References 4 High-Temperature Fe Isotope Geochemistry 4.1 Iron Isotope Variations in the Solar System 4.1.1 Chondrites and Chondritic Components 4.1.2 Differentiated Planetary Material 4.2 The Silicate Earth 4.2.1 The Mantle and Its Minerals 4.2.2 Basalts and Komatiites 4.2.3 Differentiated Crust 4.2.4 Magmatic Minerals 4.2.5 Hydrothermal Products and Ores 4.2.6 Metamorphic Rocks 4.3 Planetary Formation and Magmatic Processes 4.3.1 Planetary Accretion 4.3.2 Formation and Differentiation of Planetary Cores 4.3.3 Partial Melting on Earth and Other Planets 4.3.4 Mantle Metasomatism 4.3.5 Differentiation of Melts 4.3.6 The Mantle and Crust of the Earth as Compared to Other Planets 4.4 Summary References 5 The Modern Surficial World 5.1 Weathering 5.1.1 Mechanical Weathering 5.1.2 Chemical Weathering 5.1.3 Soils 5.2 Rivers and Groundwater 5.2.1 Rivers 5.2.2 Groundwater and Terrestrial Hydrothermal Systems 5.3 Redox-Stratified Water Bodies 5.3.1 Lake Water 5.3.2 Lake Sediments 5.3.3 The Black Sea 5.4 Marine Sediments 5.4.1 Reactive Fe Inventories 5.4.2 Pore Fluid-Sediment Interactions 5.4.3 Solid-Phase Fe Components 5.4.4 Benthic Fe Fluxes 5.5 The Fe Budget of the Modern Oceans 5.5.1 Seawater Fe 5.5.2 Riverine and Aeolian Sources 5.5.3 Benthic Sources 5.5.4 Hydrothermal Sources 5.6 Summary References 6 The Ancient Earth 6.1 The Cenozoic Marine System 6.1.1 Global Changes in the Cenozoic 6.1.2 Fe–Mn Crusts as Archives of Paleo-Seawater Compositions 6.1.3 Fe Isotope Variations in Cenozoic Seawater 6.2 Cretaceous Anoxic Events 6.2.1 Cenomanian-Turonian OAE-2 6.3 Precambrian Earth: An Introduction 6.3.1 Broad Changes in the Surface Earth in the Precambrian 6.3.2 Temporal Changes in Fe Abundance and Speciation 6.3.3 Differences in Marine Fe Pathways Between Modern and Ancient Earth 6.3.4 Authigenic Fe Isotope and Reactive Fe Trends 6.4 Precambrian Earth: The Neoproterozoic 6.4.1 Neoproterozoic Clastic Marine Sedimentary Rocks 6.4.2 Revisiting Reactive Fe Speciation and d56Fe 6.4.3 Neoproterozoic Iron Formations (IFs) 6.5 Precambrian Earth: The Paleoproterozoic and Neoarchean Transition Through the GOE 6.5.1 The Post-GOE Sedimentary Record 6.5.2 Changes in Weathering Across the GOE 6.5.3 Moving to a Low-Oxygen World: Key Issues of Fe Mass Balance, Fe Isotope Fractionation Factors, Fe 2+aq Oxidation, and the Age of Redox Proxies 6.5.4 Early Paleoproterozoic Iron Formations (IFs) 6.5.5 Early Paleoproterozoic Rise of Mn Redox 6.5.6 Paleoproterozoic and Neoarchean Continental Margins: Relations Between Shales, Carbonate Platforms, and IFs . 6.6 Precambrian Earth: The Early Archean Record 6.6.1 The Mesoarchean Witwatersrand and Pongola Basins 6.6.2 The Paleoarchean Barberton Greenstone Belt and Pilbara Craton 6.6.3 The High-Grade Metamorphic Terranes of the Eoarchean 6.7 Precambrian Earth: Synthesis of the Eoarchean Through Paleoproterozoic 6.8 Chapter Summary References
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-02-01
    Print ISSN: 0020-6814
    Electronic ISSN: 1938-2839
    Topics: Geosciences
    Published by Taylor & Francis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...