ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-01
    Description: In Europe, mixed mountain forests, primarily comprised of Norway spruce (Picea abies (L.) Karst.), silver fir (Abies alba Mill.), and European beech (Fagus sylvatica L.), cover about 10 × 106 ha at elevations between ∼600 and 1600 m a.s.l. These forests provide invaluable ecosystem services. However, the growth of these forests and the competition among their main species are expected to be strongly affected by climate warming. In this study, we analyzed the growth development of spruce, fir, and beech in moist mixed mountain forests in Europe over the last 300 years. Based on tree-ring analyses on long-term observational plots, we found for all three species (i) a nondecelerating, linear diameter growth trend spanning more than 300 years; (ii) increased growth levels and trends, the latter being particularly pronounced for fir and beech; and (iii) an elevation-dependent change of fir and beech growth. Whereas in the past, the growth was highest at lower elevations, today’s growth is superior at higher elevations. This spatiotemporal pattern indicates significant changes in the growth and interspecific competition at the expense of spruce in mixed mountain forests. We discuss possible causes, consequences, and silvicultural implications of these distinct growth changes in mixed mountain forests.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-01
    Description: Tree and stand volume estimates are relevant for forest inventories, forest sales, and carbon stock evaluations. Forest practice commonly uses generalized stem-wood volume functions; however, such generalized approaches neglect the stem form in detail. Hence, trees of a given species with the same diameter at breast height (d1.3) and height (h) are always assumed to have the same form factor and thus the same volume. This case study focused on stem form variation of Norway spruce (Picea abies (L.) Karst.) due to competition effects. Using terrestrial laser scanning (TLS), we measured the stem shape of 868 trees from a long-term spacing and thinning experiment in Germany. The plots covered a broad density range. We analysed the effect of competition and compared the TLS-determined stem volume estimates with those determined conventionally. TLS-based volume estimations showed that the lower the competition was, the lower the tree volume was with a given d1.3 and h. Commonly used functions underestimated the volume stock overall by 4.2%, disregarding any levels. At plot level, underestimation varied from 0.7% to 7.0%. At tree level, the volume was under- and over-estimated by −10% to +10%, respectively. The more precise the examination was, the more suitable the application of TLS was for enhancing volume estimation.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-10-01
    Description: Mixed-species stands are on the advance in Europe. They fulfil many functions better than monocultures. Recent papers show that mixed stands can have higher yields, but it remains open whether mixed stands simply grow faster along the same self-thinning lines as pure stands or have higher maximum stand densities. We analyzed the effect of species mixing on maximum density based on triplets of pure and mixed stands at approximately maximum density. Most considered mixtures include Norway spruce (Picea abies (L.) H. Karst.). We show that (i) in mixed stands, maximum density is, on average, 16.5% higher than in neighbouring pure stands, and (ii) species mixtures with Norway spruce exceed densities of pure stands by 8.8%, on average. For individual species mixtures, we find a significant density effect of +29.1% for Norway spruce mixed with European larch (Larix decidua Mill.) and +35.9% for Scots pine (Pinus sylvestris L.) in association with European beech (Fagus sylvatica L.). No significant links with stand variables such as age and mean tree size and site fertility were found. The results indicate that species mixing substantially increases stand density, indicating a higher carrying capacity caused by a higher supply and use efficiency of resources. The implications for inventory, silviculture, and forest modelling are discussed.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-02-01
    Description: Current individual tree growth models rarely consider the mode of tree competition, which can be size-asymmetric when growth is limited by light or size-symmetric when belowground resources are scarce. Even with the same competition index, growth reactions may vary considerably due to a prevailing resource limitation, as the dominant trees in a stand benefit disproportionately more on light-limited sites. To scrutinize and model the relationship between mode of competition and site conditions, 34 long-term experiments with 120 plots dating back to 1871 were used. The data cover the dominating tree species in central Europe along a broad range of ecological conditions. For Norway spruce ( Picea abies (L.) Karst.), Scots pine ( Pinus sylvestris L.), and sessile oak ( Quercus petrea (Matt.) Liebl.), stronger light competition can be shown on fertile sites compared with sites with poorer conditions. Based on these findings, we constructed an enhanced version of a classic potential modifier growth model. Simulations for archetypical stands yield a transition from size-asymmetric to size-symmetric competition along the gradient from fertile to poor sites that is not covered by traditional models. It was concluded that by integrating the interaction between competition and site quality, individual tree models become more site sensitive, a prerequisite for their application under fluctuating environmental conditions.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-01-01
    Description: Dense image-based point clouds have great potential to accurately assess forest attributes such as growing stock. The objective of this study was to combine height and spectral information obtained from UltraCamXp stereo images to model the growing stock in a highly structured broadleaf-dominated forest (77.5 km2) in southern Germany. We used semi-global matching (SGM) to generate a dense point cloud and subtracted elevation values obtained from airborne laser scanner (ALS) data to compute canopy height. Sixty-seven explanatory variables were derived from the point cloud and an orthoimage for use in the model. Two different approaches — the linear regression model (lm) and the random forests model (rf) — were tested. We investigated the impact that varying amounts of training data had on model performance. Plot data from a previously acquired set of 1875 inventory plots was systematically eliminated to form three progressively less dense subsets of 937, 461, and 226 inventory plots. Model evaluation at the plot level (size: 500 m2) yielded relative root mean squared errors (RMSEs) ranging from 31.27% to 35.61% for lm and from 30.92% to 36.02% for rf. At the stand level (mean stand size: 32 ha), RMSEs from 14.76% to 15.73% for lm and from 13.87% to 14.99% for rf were achieved. Therefore, similar results were obtained from both modeling approaches. The reduction in the number of inventory plots did not considerably affect the precision. Our findings underline the potential for aerial stereo imagery in combination with ALS-based terrain heights to support forest inventory and management.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-01
    Description: A common method for estimating forest biomass is to measure forest height and apply allometric equations. However, changing forest density or structure heterogeneity increases the variability of the known allometric relationship. Here, we investigated the potential of allometric relationships based on vertical forest structure for biomass inversions with a global potential. First, vertical biomass profiles, which were calculated from ground forest inventory data, were used to model forest vertical structure. Then, a vertical structure ratio based on Legendre polynomials was proposed as a structural descriptor and its sensitivity to biomass was evaluated. Finally, we developed a structure-to-biomass inversion expression that could be extrapolated for aboveground biomass estimations. This is a case study based on inventory data from the Traunstein and Ebersberg test sites, two temperate forests located in southeastern Germany with different forest structural conditions. Results from the structure-to-biomass inversion algorithm show a clear improvement with respect to traditional height-to-biomass expressions, with increasing correlation factor (r2) from 0.52 to 0.73 for Traunstein and from 0.51 to 0.76 for Ebersberg and reducing the root mean square errors from 75.32 to 47.56 Mg·ha−1 and from 73.25 to 48.31 Mg·ha−1, respectively.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-11-27
    Description: The current tendency towards the silvicultural promotion of mixed tree species has increased the variability in the crown structure within stands. This study shows how neighbouring trees can influence both the external crown features and internal wood properties of trees. Using terrestrial laser scanning, the crown features of 100 European beech trees, Fagus sylvatica L., from pure beech stands and mixed stands of beech with Douglas fir, Norway spruce, sessile oak and Scots pine were recorded. After felling and sawing, the dynamic modulus of elasticity was determined on 1623 boards from the two lower 4.1-m logs. Significant differences were found between beech trees from pure stands and those from beech–pine mixed stands in terms of crown volume (415 m3 vs 766 m3), crown ratio (50.0% vs 71.5%), crown projection ratio (0.182 m cm−1 vs 0.253 m cm−1) and branch angle (30.7° vs 54.1°). Multiple regression mixed models revealed significant relationships between timber stiffness and crown volume (-1.7 N mm−2 m−3), crown ratio (-28.4 N mm−2 %−1) and crown projection area (-9835 N mm−2 m−1 cm). Thus, the crown morphology of broad-leaved species reflects the tree’s long-term competitive status and suggests indicators for the assessment of mechanical–physical wood properties.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-07-01
    Description: The site index (SI) has been widely used in forest management and silviculture. It relies on the assumption that the height of dominant trees in a stand is independent from the local density. However, research on climate change suggests that under certain moisture stress conditions, this may not hold. Here, based on 29 plots from five long-term research experiments, we tested the effect of local stand density on the SI of Norway spruce (Picea abies (L.) H. Karst). With generalized additive models (GAMM), we analyzed the effect of stand structure and climate predictors on SI. The two evaluated models revealed that local stand density and age had a significant effect on SI (p ≤ 0.001), showing a clear negative trend especially significant on sites with poor and dry soils, which may reduce the SI by a maximum of approximately 4 m for an increase in density of between 400 and 600 trees/ha. We stress that the physiological characteristics of Norway spruce, flat-rooting system and xeromorphism, especially when growing in pure stands, may explain these effects. Thus, density control and growth in mixtures may help to reduce the water stress and losses in height growth under future climate conditions.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...