ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-12-28
    Description: The spatial structure of smooth- and rough-wall boundary layers is examined spectrally at approximately matched friction Reynolds number (δ+ ∼ 12 000). For each wall condition, temporal and true spatial descriptions of the same flow are available from hot-wire anemometry and high-spatial-range particle image velocimetry, respectively. The results show that over the resolved flow domain, which is limited to a streamwise length of twice the boundary layer thickness, true spatial spectra of smooth-wall streamwise and wall-normal velocity fluctuations agree, to within experimental uncertainty, with those obtained from time series using Taylor's frozen turbulence hypothesis (Proc. R. Soc. Lond. A, vol. 164, 1938, pp. 476-490). The same applies for the streamwise velocity spectra on rough walls. For the wall-normal velocity spectra, however, clear differences are observed between the true spatial and temporally convected spectra. For the rough-wall spectra, a correction is derived to enable accurate prediction of wall-normal velocity length scales from measurements of their time scales, and the implications of this correction are considered. Potential violations to Taylor's hypothesis in flows above perturbed walls may help to explain conflicting conclusions in the literature regarding the effect of near-wall modifications on outer-region flow. In this regard, all true spatial and corrected spectra presented here indicate structural similarity in the outer region of smooth- and rough-wall flows, providing evidence for Townsend's wall-similarity hypothesis (The Structure of Turbulent Shear Flow, vol. 1, 1956). © 2016 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-14
    Description: Turbulent boundary layer measurements above a smooth wall and sandpaper roughness are presented across a wide range of friction Reynolds numbers, δ+99, and equivalent sand grain roughness Reynolds numbers, k+s (smooth wall: 2020 ≤ δ+99 ≤ 21 430, rough wall: 2890 ≤ δ+99 ≤ 29 900; 22 ≤ k+s ≤ 155; and 28 ≤ δ+99=k+s ≤ 199). For the rough-wall measurements, the mean wall shear stress is determined using a floating element drag balance. All smooth- and rough-wall data exhibit, over an inertial sublayer, regions of logarithmic dependence in the mean velocity and streamwise velocity variance. These logarithmic slopes are apparently the same between smooth and rough walls, indicating similar dynamics are present in this region. The streamwise mean velocity defect and skewness profiles each show convincing collapse in the outer region of the flow, suggesting that Townsend's (The Structure of Turbulent Shear Flow, vol. 1, 1956, Cambridge University Press.) wall-similarity hypothesis is a good approximation for these statistics even at these finite friction Reynolds numbers. Outer-layer collapse is also observed in the rough-wall streamwise velocity variance, but only for flows with δ+99 ≳ 14 000. At Reynolds numbers lower than this, profile invariance is only apparent when the flow is fully rough. In transitionally rough flows at low δ+99, the outer region of the inner-normalised streamwise velocity variance indicates a dependence on k+s for the present rough surface. © 2016 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-05-25
    Description: In the published version of figure 7 errors were unfortunately introduced in the data sets shown. Figure 7 should be replaced by the figure shown below. The publisher apologises to the authors, editors and readers for this error. © 2016 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...