ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (5)
Collection
Publisher
Years
  • 1
    Publication Date: 1993-07-01
    Description: The postglacial uplift pattern indicated by elevations of ice-marginal glaciomarine deltas in coastal New England, deposited between approximately 15,000 and 14,000 yr B.P. during ice retreat from northeastern Massachusetts into southwestern Maine, is very similar to that previously recorded for glaciolacustrine deltas of similar age from inland areas of New England. Multiple regression analyses of elevations from both sets of deltas show an extremely close fit to tilted flat surfaces that rise 0.852 m/km to the N 28.5°W along the coast and 0.889 m/km to the N 20.5°W in western New England. The close similarity of uplift pattern in areas where elevation data are from different base-level media, along with additional shore-line evidence, indicates (1) that both areas are part of the same crustal postglacial uplift block, (2) that postglacial uplift was delayed until after 14,000 yr B.P., and (3) that little or no eustatic sea-level change occurred between 15,000 and 14,000 yr B.P., during which time the margin of the late Wisconsinan Laurentide ice sheet retreated about 100 km from Boston, Massachusetts, into southwestern Maine. Elevation data from even younger glaciomarine deltas in the coastal area indicate that soon after the ice margin reached southwestern Maine and adjacent New Hampshire (ca, 14,000 yr B.P.), eustatic sea level rose rapidly 7-10 m during the time that the ice margin retreated 5-10 km, which may have occurred during an interval of only 50-100 yr, Our new data not only confirm the delayed postglacial uplift model previously described for western New England, but also indicate that little or no eustatic sea-level change occurred during a substantial period of early deglaciation. However, at about 14,000 yr B.P., sea level rose rapidly. Postglacial uplift in the region apparently began between 14,000 and 13,300 yr B.P., before the retreating ice margin reached eastern Maine.
    Print ISSN: 0033-5894
    Electronic ISSN: 1096-0287
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-01
    Description: Recession of the Laurentide Ice Sheet from northern New Hampshire was interrupted by the Littleton-Bethlehem (L-B) readvance and deposition of the extensive White Mountain Moraine System (WMMS). Our mapping of this moraine belt and related glacial lake sequence has refined the deglaciation history of the region. The age of the western part of the WMMS is constrained to ~14.0–13.8 cal ka BP by glacial Lake Hitchcock varves that occur beneath and above L-B readvance till and were matched to a revised calibration of the North American Varve Chronology presented here. Using this age for when boulders were deposited on the moraines has enabled calibration of regional cosmogenic-nuclide production rates to improve the precision of exposure dating in New England. The L-B readvance coincided with the Older Dryas (OD) cooling documented by workers in Europe and the equivalent GI-1d cooling event in the Greenland Ice Core Chronology 2005 (GICC05) time scale. The readvance and associated moraines provide the first well-documented and dated evidence of the OD event in the northeastern United States. Our lake sediment cores show that the Younger Dryas cooling was likewise prominent in the White Mountains, thus extending the record of this event westward from Maine and Maritime Canada.
    Print ISSN: 0033-5894
    Electronic ISSN: 1096-0287
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-01
    Description: Prominent moraines deposited by the Laurentide Ice Sheet in northern New England document readvances, or stillstands, of the ice margin during overall deglaciation. However, until now, the paucity of direct chronologies over much of the region has precluded meaningful assessment of the mechanisms that drove these events, or of the complex relationships between ice-sheet dynamics and climate. As a step towards addressing this problem, we present a cosmogenic 10Be surface-exposure chronology from the Androscoggin moraine complex, located in the White Mountains of western Maine and northern New Hampshire, as well as four recalculated ages from the nearby Littleton–Bethlehem moraine. Seven internally consistent 10Be ages from the Androscoggin terminal moraines indicate that advance culminated ~ 13.2 ± 0.8 ka, in close agreement with the mean age of the neighboring Littleton–Bethlehem complex. Together, these two datasets indicate stabilization or advance of the ice-sheet margin in northern New England, at ~ 14–13 ka, during the Allerød/Greenland Interstadial I.
    Print ISSN: 0033-5894
    Electronic ISSN: 1096-0287
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-05-01
    Description: Excavations in the late-glacial Presumpscot Formation at Portland, Maine, uncovered tree remains and other terrestrial organics associated with marine invertebrate shells in a landslide deposit. Buds of Populus balsamifera (balsam poplar) occurred with twigs of Picea glauca (white spruce) in the Presumpscot clay. Tree rings in Picea logs indicate that the trees all died during winter dormancy in the same year. Ring widths show patterns of variation indicating responses to environmental changes. Fossil mosses and insects represent a variety of species and wet to dry microsites. The late-glacial environment at the site was similar to that of today's Maine coast. Radiocarbon ages of 14 tree samples are 11,907 ± 31 to 11,650 ± 50 14C yr BP. Wiggle matching of dated tree-ring segments to radiocarbon calibration data sets dates the landslide occurrence at ca. 13,520 + 95/−20 cal yr BP. Ages of shells juxtaposed with the logs are 12,850 ± 65 14C yr BP (Mytilus edulis) and 12,800 ± 55 14C yr BP (Balanus sp.), indicating a marine reservoir age of about 1000 yr. Using this value to correct previously published radiocarbon ages reduces the discrepancy between the Maine deglaciation chronology and the varve-based chronology elsewhere in New England.
    Print ISSN: 0033-5894
    Electronic ISSN: 1096-0287
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-11-22
    Description: At its late Pleistocene maximum, the Laurentide Ice Sheet was the largest ice mass on Earth and a key player in the modulation of global climate and sea level. At the same time, this temperate ice sheet was itself sensitive to climate, and high-magnitude fluctuations in ice extent, reconstructed from relict glacial deposits, reflect past changes in atmospheric temperature. Here, we present a cosmogenic 10Be surface-exposure chronology for the Berlin moraines in the White Mountains of northern New Hampshire, USA, which supports the model that deglaciation of New England was interrupted by a pronounced advance of ice during the Bølling-Allerød. Together with recalculated 10Be ages from the southern New England coast, the expanded White Mountains moraine chronology also brackets the timing of ice sheet retreat in this sector of the Laurentide. In conjunction with existing chronological data, the moraine ages presented here suggest that deglaciation was widespread during Heinrich Stadial 1 event (~18–14.7 ka) despite apparently cold marine conditions in the adjacent North Atlantic. As part of the White Mountains moraine system, the Berlin chronology also places a new terrestrial constraint on the former glacial configuration during the marine incursion of the St. Lawrence River valley north of the White Mountains.
    Print ISSN: 0033-5894
    Electronic ISSN: 1096-0287
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...