ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (1)
Collection
Publisher
Years
  • 1
    Publication Date: 1999-09-01
    Description: Mount Willing in the Prince Charles Mountains (East Antarctica) is part of the Fisher Volcano–plutonic complex which formed as part of the global-scale Grenvillian mobile belt system. Mount Willing is composed of four rock complexes: 1) a metamorphic sequence, 2) gabbro intrusions, 3) deformed felsic intrusives, and 4) abundant post-metamorphic dykes and veins. Three rock types constitute the metamorphic sequence: amphibole–biotite felsic plagiogneiss, mafic to intermediate biotite–amphibole schist, and biotite paragneiss. The bulk composition of the mafic schists classifies them as tholeiitic basalts, and rarely as basaltic andesites or andesites. Index mg ranges widely from 47 to 71. Concentrations of TiO2, P2O5, and high-field strength elements are high in some rocks. These rocks are thought to have been derived from enriched (subcontinental) mantle sources. Sm–Nd and U–Pb isotopic data indicate a series of Mesoproterozoic thermal events between 1100 and 1300 Ma. In particular, these events occurred at 1289 ± 10 Ma (volcanic activity), at 1177 ± 16 Ma (tonalite intrusion), at 1112.7 ± 2.4 and at 1009 ± 54 Ma (amphibolite facies metamorphic events). Rb–Sr systematics also indicates a thermal overprint at 636 ± 13 Ma. Mafic schists show low initial 877Sr/86Sr ratios between 0.7024 and 0.7030. Felsic rocks show higher Sri values between 0.7037 and 0.7061. Basaltic andesite metavolcanic and plutonic rocks form a calc-alkaline evolutionary trend, and probably originated from subduction-modified mantle sources in a convergent plate margin environment. An oceanic basin may have existed in central Prince Charles Mountains about 1300 Ma ago and was closed as a result of continental collision around 1000 to 800 Ma.
    Print ISSN: 0954-1020
    Electronic ISSN: 1365-2079
    Topics: Biology , Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...