ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0026-749X
    Source: Cambridge Journals Digital Archives
    Topics: Ethnic Sciences , History , Political Science , Economics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-04-22
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-01-26
    Description: While fluid flows are known to promote dissolution of materials, such processes are poorly understood due to the coupled dynamics of the flow and the receding surface. We study this moving boundary problem through experiments in which hard candy bodies dissolve in laminar high-speed water flows. We find that different initial geometries are sculpted into a similar terminal form before ultimately vanishing, suggesting convergence to a stable shape-flow state. A model linking the flow and solute concentration shows how uniform boundary-layer thickness leads to uniform dissolution, allowing us to obtain an analytical expression for the terminal geometry. Newly derived scaling laws predict that the dissolution rate increases with the square root of the flow speed and that the body volume vanishes quadratically in time, both of which are confirmed by experimental measurements. © 2015 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-03-22
    Description: We present a model for ice formation in a thin, viscous liquid film driven by a Blasius boundary layer after heating is switched off along part of the flat plate. The flow is assumed to initially be in the Nelson et al. (J. Fluid Mech., vol. 284, 1995, pp. 159-169) steady-state configuration with a constant flux of liquid supplied at the tip of the plate, so that the film thickness grows like x1/4 in distance along the plate. Plate cooling is applied downstream of a point, Lx0, an O.(L)-distance from the tip of the plate, where is much larger than the film thickness. The cooling is assumed to be slow enough that the flow is quasi-steady. We present a thorough asymptotic derivation of the governing equations from the incompressible Navier-Stokes equations in each fluid and the corresponding Stefan problem for ice growth. The problem breaks down into two temporal regimes corresponding to the relative size of the temperature difference across the ice, which are analysed in detail asymptotically and numerically. In each regime, two distinct spatial regions arise, an outer region of the length scale of the plate, and an inner region close to in which the film and air are driven over the growing ice layer. Moreover, in the early time regime, there is an additional intermediate region in which the air-water interface propagates a slope discontinuity downstream due to the sudden onset of the ice at the switch-off point. For each regime, we present ice profiles and growth rates, and show that for large times, the film is predicted to rupture in the outer region when the slope discontinuity becomes sufficiently enhanced. © 2017 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-05-09
    Description: A hierarchy of models is formulated for the deflection of a thin two-dimensional liquid jet as it passes over a thin air-cushioning layer above a rigid flat impermeable substrate. We perform a systematic derivation of the leading-order equations of motion for the jet in the distinguished limit in which the air pressure jump, surface tension and gravity affect the displacement of the centreline of the jet, but not its thickness or velocity. We identify thereby the axial length scales for centreline deflection in regimes in which the air layer is dominated by viscous or inertial effects. The derived length scales and reduced equations aim to expand the suite of tools available for future analyses of the evolution of lamellae and ejecta in impact problems. Assuming that the jet is sufficiently long that tip and entry effects can be neglected, we demonstrate that the centreline of a constant-Thickness jet moving with constant axial speed is destabilised by the air layer for sufficiently small surface tension. Expressions for the fastest-growing modes are obtained in both the viscous-dominated air and inertia-dominated air regimes. For a finite-length jet emanating from a nozzle, we show that, in one particular asymptotic limit, the evolution of the jet centreline is akin to the flapping of an unfurling flag above a thin air layer. We discuss the distinguished limit in which tip retraction can be neglected and perform numerical investigations into the resulting model. We show that the cushioning layer causes the jet centreline to bend, leading to rupture of the air layer. We discuss how our toolbox of models can be adapted and utilised in the context of recent experimental and numerical studies of splash dynamics. © Cambridge University Press 2018.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-09-19
    Description: This paper extends Wagner theory for the ideal, incompressible normal impact of rigid bodies that are nearly parallel to the surface of a liquid half-space. The impactors considered are three-dimensional and have an oblique impact velocity. A formulation in terms of the displacement potential is used to reveal the relationship between the oblique and corresponding normal impact solutions. In the case of axisymmetric impactors, several geometries are considered in which singularities develop in the boundary of the effective wetted region. We present the corresponding pressure profiles and models for the splash sheets. © 2012 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-10-11
    Description: We perform a thorough qualitative and quantitative comparison of theoretical predictions and direct numerical simulations for the two-dimensional, vertical impact of two droplets of the same fluid. In particular, we show that the theoretical predictions for the location and velocity of the jet root are excellent in the early stages of the impact, while the predicted jet velocity and thickness profiles are also in good agreement with the computations before the jet begins to bend. By neglecting the role of the surrounding gas both before and after impact, we are able to use Wagner theory to describe the early-time structure of the impact. We derive the model for general droplet velocities and radii, which encompasses a wide range of impact scenarios from the symmetric impact of identical drops to liquid drops impacting a deep pool. The leading-order solution is sufficient to predict the curve along which the root of the high-speed jet travels. After moving into a frame fixed in this curve, we are able to derive the zero-gravity shallow-water equations governing the leading-order thickness and velocity of the jet. Our numerical simulations are performed in the open-source software Gerris, which allows for the level of local grid refinement necessary for a problem with such a wide variety of length scales. The numerical simulations incorporate more of the physics of the problem, in particular the surrounding gas, the fluid viscosities, gravity and surface tension. We compare the computed and predicted solutions for a range of droplet radii and velocities, finding excellent agreement in the early stage. In light of these successful comparisons, we discuss the tangible benefits of using Wagner theory to confidently track properties such as the jet-root location, jet thickness and jet velocity in future studies of splash jet/ejecta evolution. © 2018 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-11
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-09-24
    Description: Wing or fin flexibility can dramatically affect the performance of flying and swimming animals. Both laboratory experiments and numerical simulations have been used to study these effects, but analytical results are notably lacking. Here, we develop small-amplitude theory to model a flapping wing that pitches passively due to a combination of wing compliance, inertia and fluid forces. Remarkably, we obtain a class of exact solutions describing the wing's emergent pitching motions, along with expressions for how thrust and efficiency are modified by compliance. The solutions recover a range of realistic behaviours and shed new light on how flexibility can aid performance, the importance of resonance, and the separate roles played by wing and fluid inertia. The simple robust estimates afforded by our theory may prove valuable even in situations where details of the flapping motion and wing geometry differ. © 2014 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-02-21
    Description: Inspired by recent calculations by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, p. 264506) relating to droplet impact, this paper presents an analysis of the perturbations to the free surface caused by small surface tension and viscosity in steady Helmholtz flows. In particular, we identify the regimes in which appreciable vorticity can be shed from the boundary layer to the bulk flow. © 2014 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...