ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-08-08
    Description: The cavity-particle dynamics at cavitation inception on the surface of spherical particles suspended in water and exposed to a strong tensile stress wave is experimentally studied with high-speed photography. Particles, which serve as nucleation sites for cavitation bubbles, are set into a fast translatory motion during the explosive growth of the cavity. They reach velocities of ∼40 ms-1 and even higher. When the volume growth of the cavity slows down, the particle detaches from the cavity through a process of neck-breaking, and the particle is shot away. The experimental observations are simulated with (i) a spherical cavity model and (ii) with an axisymmetric boundary element method (BEM). The input for both models is a pressure pulse, which is obtained from the observed radial cavity dynamics during an individual experiment. The model then allows us to calculate the resulting particle trajectory. The cavity shapes obtained from the BEM calculations compare well with the photographs until neck formation occurs. In several cases we observed inception at two or more locations on a single particle. Moreover, after collapse of the primary cavity, a second inception was often observed. Finally, an example is presented to demonstrate the potential application of the cavity-particle system as a particle cannon, e.g. in the context of drug delivery into tissue. © 2008 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-11-23
    Description: The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave-bubble interaction are discussed. © 2007 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-07
    Description: A formulation of the boundary integral method for solving partial differential equations has been developed whereby the usual weakly singular integral and the Cauchy principal value integral can be removed analytically. The broad applicability of the approach is illustrated with a number of problems of practical interest to fluid and continuum mechanics including the solution of the Laplace equation for potential flow, the Helmholtz equation as well as the equations for Stokes flow and linear elasticity. © 2012 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-06-21
    Description: We report on an experimental study of cavitation bubble dynamics within sub-millimetre-sized narrow gaps. The gap height is varied, while the position of the cavitation event is fixed with respect to the lower gap wall. Four different sizes of laser-induced cavitation bubbles are studied using high-speed photography of up to 430,000 frames per second. We find a strong influence of the gap height, H, on the bubble dynamics, in particular on the collapse scenario. Also, similar bubble dynamics was found for the same non-dimensional gap height Ε = H/Rx, where Rx is the maximum radius in the horizontal direction. Three scenarios are observed: neutral collapse at the gap centre, collapse onto the lower wall and collapse onto the upper wall. For intermediate gap height the bubble obtains a conical shape 1.4 〈 Ε 〈 7.0. For large distances, Ε 〉 7.0, the bubble no longer feels the presence of the upper wall and collapses hemispherically. The collapse time increases with respect to the expansion time for decreasing values of Ε. Due to the small scales involved, the final stage of the bubble collapse could not be resolved temporally and numerical simulations were performed to elucidate the details of the flow. The simulations demonstrate high-speed jetting towards the upper and lower walls and complex bubble splitting for neutral collapses. © Cambridge University Press 2011.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...