ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (3)
  • 1
    Publication Date: 2012-08-06
    Description: In this paper the pressure field during the early development of turbulent vortex rings at two Reynolds numbers is determined using temporally resolved two-dimensional and stereoscopic particle image velocimetry (PIV). The pressure gradient terms are obtained by solving the incompressible Euler equation so that the drag coefficients of the vortex rings can be evaluated. Maxworthy (J. Fluid Mech., vol. 64, 1974, pp. 227-239) and Glezer & Coles (J. Fluid Mech., vol. 211, 1990, pp. 243-283) each developed models to describe the long-term physics of turbulent vortex rings: the former developed a semi-empirical model which permits loss of impulse via the shedding of vorticity into the wake whereas the latter developed a similarity model based on invariance of the hydrodynamic impulse. Maxworthy's model implies that a significant correction to the similarity solution is required to account for the drag on the vortex ring bubble. We show that during the early development of the turbulent vortex rings the drag is very small and the similarity scaling can basically be retained. © 2012 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-28
    Description: In this paper we examine the invariants p and q of the reduced 2 × 2 velocity gradient tensor (VGT) formed from a two-dimensional (2D) slice of an incompressible three-dimensional (3D) flow. Using data from both 2D particle image velocimetry (PIV) measurements and 3D direct numerical simulations of various turbulent flows, we show that the joint probability density functions (p.d.f.s) of p and q exhibit a common characteristic asymmetric shape consistent with 〈 0. An explanation for this inequality is proposed. Assuming local homogeneity we derive = 0 and q = 0. With the addition of local isotropy the sign of is proved to be the same as that of the skewness of u1/x 1, hence negative. This suggests that the observed asymmetry in the joint p.d.f.s of p-q stems from the universal predominance of vortex stretching at the smallest scales. Some advantages of this joint p.d.f. compared with that of Q-R obtained from the full 3 × 3 VGT are discussed. Analysing the eigenvalues of the reduced strain-rate matrix associated with the reduced VGT, we prove that in some cases the 2D data can unambiguously discriminate between the bi-axial (sheet-forming) and axial (tube-forming) strain-rate configurations of the full 3 × 3 strain-rate tensor. © 2013 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-02
    Description: The statistics of the velocity gradient tensor A = ∇u, which embody the fine scales of turbulence, are influenced by turbulent 'structure'. Whilst velocity gradient statistics and dynamics have been well characterised, the connection between structure and dynamics has largely focused on rotation-dominated flow and relied upon data from numerical simulation alone. Using numerical and spatially resolved experimental datasets of homogeneous turbulence, the role of structure is examined for all local (incompressible) flow topologies characterisable by A. Structures are studied through the footprints they leave in conditional averages of the Q = -Tr(A2)/2 field, pertinent to non-local strain production, obtained using two complementary conditional averaging techniques. The first, stochastic estimation, approximates the Q field conditioned upon A and educes quantitatively similar structure in both datasets, dissimilar to that of random Gaussian velocity fields. Moreover, it strongly resembles a promising model for velocity gradient dynamics recently proposed by Wilczek & Meneveau (J. Fluid Mech., vol. 756, 2014, pp. 191-225), but is derived under a less restrictive premise, with explicitly determined closure coefficients. The second technique examines true conditional averages of the Q field, which is used to validate the stochastic estimation and provide insights towards the model's refinement. Jointly, these approaches confirm that vortex tubes are the predominant feature of rotation-dominated regions and additionally show that shear layer structures are active in strain-dominated regions. In both cases, kinematic features of these structures explain alignment statistics of the pressure Hessian eigenvectors and why local and non-local strain production act in opposition to each other. © 2015 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...