ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-08-23
    Description: SUMMARYOne of the main problems in estimating the effects of climate change on crops is the identification of those factors limiting crop growth in a selected environment. Previous studies have indicated that considering simple trends of either precipitation or temperature for the coming decades is insufficient for estimating the climate impact on yield in the future. One reason for this insufficiency is that changes in weather extremes or seasonal weather patterns may have marked impacts.The present study focuses on identifying agroclimatic parameters that can identify the effects of climate change and variability on winter wheat yield change in the Pannonian lowland. The impacts of soil type under past and future climates as well as the effect of different CO2 concentrations on yield formation are also considered. The Vojvodina region was chosen for this case study because it is a representative part of the Pannonian lowland.Projections of the future climate were taken from the HadCM3, ECHAM5 and NCAR-PCM climate models with the SRES-A2 scenario for greenhouse gas (GHG) emissions for the 2040 and 2080 integration periods. To calibrate and validate the Met&Roll weather generator, four-variable weather data series (for six main climatic stations in the Vojvodina region) were analysed. The grain yield of winter wheat was calculated using the SIRIUS wheat model for three different CO2 concentrations (330, 550 and 1050 ppm) dependent on the integration period. To estimate the effects of climatic parameters on crop yield, the correlation coefficient between crop yield and agroclimatic indices was calculated using the AGRICLIM software. The present study shows that for all soil types, the following indices are the most important for winter wheat yields in this region: (i) the number of days with water and temperature stress, (ii) the accumulated precipitation, (iii) the actual evapotranspiration (ETa) and (iv) the water deficit during the growing season. The high positive correlations between yield and the ETa, accumulated precipitation and the ratio between the ETa and reference evapotranspiration (ETr) for the April–June period indicate that water is and will remain a major limiting factor for growing winter wheat in this region. Indices referring to negative impact on yield are (i) the number of days with a water deficit for the April–June period and (ii) the number of days with maximum temperature above 25 °C (summer days) and the number of days with maximum temperature above 30 °C (tropical days) in May and June. These indices can be seen as indicators of extreme weather events such as drought and heat waves.
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-08
    Description: SUMMARYThe Decision Support System for Agrotechnology Transfer (DSSAT) v. 4·2 crop model was used to estimate climate change impacts on soybean yield in Serbia in simulations for 2030 and 2050 integration periods using three global climate change models (GCMs): the European Centre Hamburg Model (ECHAM), The Hadley Centre Coupled Model (HadCM) and the National Center for Atmospheric Research Parallel Climate Model (NCAR-PCM) under two scenarios from the IPCC Special Report on Emissions Scenarios (IPCC 2001): A1B SRES and A2 SRES. Input data included weather data from a 1971–2000 baseline period from ten weather stations assimilated from the Republic Hydrometeorological Service of Serbia. Output results from the three GCMs under the two scenarios for 2030 and 2050 were statistically downscaled with the ‘Met & Roll’ weather generator for predicted climate conditions. Mechanical and chemical soil properties were collected in the vicinity of weather stations and analysed by the Agency for Environmental Safety in Belgrade. Genetic coefficients, for the soybean maturity group II variety, were slightly modified using the DSSAT-SOYGRO model ones. The results showed a considerable benefit of carbon dioxide fertilization on soybean yield and yield increases at all locations. The greatest estimated yield increases obtained using outputs the HadCM model for 2030 both scenarios; in 2050, however, the A2 scenario resulted in smaller increase in yield at some locations. The highest increase in yield was in the central and eastern parts of Serbia. Analyses of the climate change impacts on irrigation demand showed a great increase in the irrigation demand amount per growing season. The average irrigation demand reached the highest values in the southern and eastern parts of Serbia. Water productivity reached highest values in eastern and central locations, while the minimum is expected in the most southern and northern location. According to all results it can be concluded that soybean will benefit greatly under climate change conditions and that soybean cropping, currently most concentrated in the Vojvodina region in northern Serbia, expanding in the central part and one location in eastern Serbia.
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...