ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (16)
Collection
Publisher
  • 1
    Publication Date: 1994-07-25
    Description: When air blows over water the wind exerts a stress at the interface thereby inducing in the water a sheared turbulent drift current. We present scaling arguments showing that, if a wind suddenly starts blowing, then the sheared drift current grows in depth on a timescale that is larger than the wave period, but smaller than a timescale for wave growth. This argument suggests that the drift current can influence growth of waves of wavelength λ that travel parallel to the wind at speed c. In narrow ‘inner’ regions either side of the interface, turbulence in the air and water flows is close to local equilibrium; whereas above and below, in ‘outer’ regions, the wave alters the turbulence through rapid distortion. The depth scale, la, of the inner region in the air flow increases with c/u*a (u*a is the unperturbed friction velocity in the wind). And so we classify the flow into different regimes according to the ratio la/λ. We show that different turbulence models are appropriate for the different flow regimes. When (u*a + c)/UB(λ) ≪ 1 (UB(z) is the unperturbed wind speed) la is much smaller than λ. In this limit, asymptotic solutions are constructed for the fully coupled turbulent flows in the air and water, thereby extending previous analyses of flow over irrotational water waves. The solutions show that, as in calculations of flow over irrotational waves, the air flow is asymmetrically displaced around the wave by a non-separated sheltering effect, which tends to make the waves grow. But coupling the air flow perturbations to the turbulent flow in the water reduces the growth rate of the waves by a factor of about two. This reduction is caused by two distinct mechanisms. Firstly, wave growth is inhibited because the turbulent water flow is also asymmetrically displaced around the wave by non-separated sheltering. According to our model, this first effect is numerically small, but much larger erroneous values can be obtained if the rapid-distortion mechanism is not accounted for in the outer region of the water flow. (For example, we show that if the mixing-length model is used in the outer region all waves decay!) Secondly, non-separated sheltering in the air flow (and hence the wave growth rate) is reduced by the additional perturbations needed to satisfy the boundary condition that shear stress is continuous across the interface. In a companion paper, we develop a numerical model for the coupled air-water flow with waves of arbitrary speed and in another we examine the detailed energy budget of the wave motions. © 1994, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-05-10
    Description: We divide the interaction between wind and ocean surface waves into three parameter regimes, namely slow, intermediate and fast waves, that are distinguished by the ratio c/u. (c is the wave phase speed and u. is the friction velocity in the wind). We develop here an analytical model for linear changes to the turbulent air flow caused by waves of small slope that is applicable to slow and to fast waves. The wave-induced turbulent shear stress is parameterized here with a damped mixing-length model, which tends to the mixing-length model in an inner region that lies dose to the surface, and is then damped exponentially to zero in an outer region that lies above the inner region. An adjustable parameter in the damped mixing-length model controls the rate of decay of the wave-induced stress above the inner region, and shows bow the results van from a model with no damping, which corresponds to using the mixing-length model throughout the flow, to a model with full damping, which, following previous suggestions, correctly represents rapid distortion of the wave-induced turbulence in the outer region. Solutions for air flow over fast waves are obtained by analysing the displacement of streamlines over the wave: they show that fast waves are damped, thereby giving their energy up to the wind. There is a contribution to this damping from a counterpart of the non-separated sheltering mechanism that gives rise to growth of slow waves (Belcher & Hunt 1993). This sheltering contribution is smaller than a contribution from the wave-induced surface stress working against the orbital motions in the water. Solutions from the analysis for both slow and fast waves are in excellent agreement with values computed by Mastenbroek (1996) from the nonlinear equations of motion with a full second-order closure model for the turbulent stresses. Comparisons with data for slow and intermediate waves show that the results agree well with laboratory measurements over wind-ruffled paddle-generated waves, but give results that are a factor of about two smaller than measurements of purely wind-generated waves. We know of no data for fast waves with which to compare the model. The damping rates we find for fast waves lead to e-folding times for the decay of the waves that are a day or longer. Although this wind-induced damping of fast waves is small, we suggest that it might control low-frequency waves in a fully-developed sea.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-06-01
    Description: We investigate the changes to a fully developed turbulent boundary layer caused by the presence of a two-dimensional moving wave of wavelength L = 2π/k and amplitude a. Attention is focused on small slopes, ak, and small wave speeds, c, so that the linear perturbations are calculated as asymptotic sequences in the limit (U*+ c)/UB(L) →0 (U*is the unperturbed friction velocity and UB(L) is the approach-flow mean velocity at height L). The perturbations can then be described by an extension of the four-layer asymptotic structure developed by Hunt, Leibovich & Richards (1988) to calculate the changes to a boundary layer passing over a low hill. When (u*+ c)/UB(L) is small, the matched height, zm (the height where UBequals c), lies within an inner surface layer, where the perturbation Reynolds shear stress varies only slowly. Solutions across the matched height are then constructed by considering an equation for the shear stress. The importance of the shear-stress perturbation at the matched height implies that the inviscid theory of Miles (1957) is inappropriate in this parameter range. The perturbations above the inner surface layer are not directly influenced by the matched height and the region of reversed flow below zm: they are similar to the perturbations due to a static undulation, but the ‘effective roughness length’ that determines the shape of the unperturbed velocity profile is modified to zm = z0exp (KC/U*). The solutions for the perturbations to the boundary layer are used to calculate the growth rate of waves, which is determined at leading order by the asymmetric pressure perturbation induced by the thickening of the perturbed boundary layer on the leeside of the wave crest. At first order in (u*+ c)/UB(L), however, there are three new effects which, numerically, contribute significantly to the growth rate, namely: the asymmetries in both the normal and shear Reynolds stresses associated with the leeside thickening of the boundary layer, and asymmetric perturbations induced by the varying surface velocity associated with the fluid motion in the wave; further asymmetries induced by the variation in the surface roughness along the wave may also be important. © 1993, Cambridge University Press
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1993-04-01
    Description: We investigate, using theoretical and computational techniques, the processes that lead to the drag force on a rigid surface that has two-dimensional undulations of length L and height H (with H/L 〈 1) caused by the flow of a turbulent boundary layer of thickness h. The recent asymptotic analyses of Sykes (1980) and Hunt, Leibovich & Richards (1988) of the linear changes induced in a turbulent boundary layer that flows over an undulating surface are extended in order to calculate the leading-order contribution to the drag. It is assumed that L is much less than the natural lengthscale h* = hUJu* over which the boundary layer evolves (w* is the unperturbed friction velocity and t/0a mean velocity scale in the approach flow). At leading order, the perturbation to the drag force caused by the undulations arises from a pressure asymmetry at the surface that is produced by the thickening of the perturbed boundary layer in the lee of the undulation. This we term non-separated sheltering to distinguish it from the mechanism proposed by Jeffreys (1925). Order of magnitude estimates are derived for the other mechanisms that contribute to the drag; the next largest is shown to be smaller than the non-separated sheltering effect by 0(w*/t/o). The theoretical value of the drag induced by the non-separated sheltering effect is in good agreement with both the values obtained by numerical integration of the nonlinear equations with a second-order-closure model and experiments. Although the analytical solution is developed using the mixing-length model for the Reynolds stresses, this model is used only in the inner region, where the perturbation shear stress has a significant effect on the mean flow. The analytical perturbation shear stresses are approximately equal to the results from a higher-order closure model, except where there is strong acceleration or deceleration. The asymptotic theory and the results obtained using the numerical model show that the perturbations to the Reynolds stresses in the outer region do not directly contribute a significant part of the drag. This explains why several previous analyses and computations that use the mixing-length model inappropriately throughout the flow lead to values of the drag force that are too large by up to 100 %. © 1993, Cambridge University Press
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-11-03
    Description: The rapid-distortion model of Hunt & Graham (1978) for the initial distortion of turbulence by a flat boundary is extended to account fully for viscous processes. Two types of boundary are considered: a solid wall and a free surface. The model is shown to be formally valid provided two conditions are satisfied. The first condition is that time is short compared with the decorrelation time of the energy-containing eddies, so that nonlinear processes can be neglected. The second condition is that the viscous layer near the boundary, where tangential motions adjust to the boundary condition, is thin compared with the scales of the smallest eddies. The viscous layer can then be treated using thin-boundary-layer methods. Given these conditions, the distorted turbulence near the boundary is related to the undistorted turbulence, and thence profiles of turbulence dissipation rate near the two types of boundary are calculated and shown to agree extremely well with profiles obtained by Perot & Moin (1993) by direct numerical simulation. The dissipation rates are higher near a solid wall than in the bulk of the flow because the no-slip boundary condition leads to large velocity gradients across the viscous layer. In contrast, the weaker constraint of no stress at a free surface leads to the dissipation rate close to a free surface actually being smaller than in the bulk of the flow. This explains why tangential velocity fluctuations parallel to a free surface are so large. In addition we show that it is the adjustment of the large energy-containing eddies across the viscous layer that controls the dissipation rate, which explains why rapid-distortion theory can give quantitatively accurate values for the dissipation rate. We also find that the dissipation rate obtained from the model evaluated at the time when the model is expected to fail actually yields useful estimates of the dissipation obtained from the direct numerical simulation at times when the nonlinear processes are significant. We conclude that the main role of nonlinear processes is to arrest growth by linear processes of the viscous layer after about one large-eddy turnover time.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-09-25
    Description: General estimates are derived for mean velocities through and around groups or arrays of fixed and moving bodies, in unbounded and bounded domains, which lie within a defined perimeter. Robust kinematic flow concepts are introduced, namely the Eulerian spatial mean velocity ūE in the fluid volume between the bodies, the Eulerian flow outside the group, uE(0), and the Lagrangian mean velocity of material surfaces or fluid particles as they pass through the group of bodies (ūL(S), ūL(P)). The Eulerian mean velocity is related to the momentum in the fluid domain, and is mainly influenced by fast moving regions of the flow. The Lagrangian mean velocity weights slowly moving regions of flow and is related to how material sheets deform as they are advected through groups of bodies. When the bodies are well-separated, the interstitial Eulerian and Lagrangian mean velocities (ūE(I), ūL(I)), are defined and calculated in terms of the far-field contributions from the velocity or displacement field within the group of bodies. In unbounded flow past well-separated bodies situated within a rectangular perimeter, the difference between the Eulerian and Lagrangian mean velocity is negligible (as the void fraction of the bodies, α → 0). Within wide and short rectangular arrays, the Eulerian mean velocity is faster than the free-stream velocity U because most of the incident flow passes through the array and ūE = U(1 - α)-1. Within long and thin rectangular arrays (and other cases where the reflux velocity is negligible), the Eulerian mean velocity, ūE = U(1 - (1+ Cm)α)/(1 - α), is slower than the free-stream velocity, because most of the incident flow passes around the array. For a spherical or circular arrays of bodies, the particle Lagrangian mean velocity is ūL(P) = U(1 + Cmα)-1 and differs from ūE. These calculations are extended to examine the mean and interstitial flow through clouds of bodies in bounded channel flows. The new concepts are applied to calculate the mean flow and pressure between and outside clouds of bodies, the average velocity of bubbly flows as a function of void fraction, and the tendency of clouds of bubbles to be distorted depending on their shape. © 2004 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1992-05-01
    Description: An asymptotic analysis is developed for turbulent boundary layers in strong adverse pressure gradients. It is found that the boundary layer divides into three distinguishable regions: these are the wall layer, the wake layer and a transition layer. This structure has two key differences from the zero-pressure-gradient boundary layer: the wall layer is not eXponentially thinner than the wake; and the wake has a large velocity deficit, and cannot be linearized. The mean velocity profile has a y1/2 behaviour in the overlap layer between the wall and transition regions. The analysis is done in the conteXt of eddy viscosity closure modelling. It is found that k-ε-type models are suitable to the wall region, and have a power-law solution in the y1/2 layer. The outer-region scaling precludes the usual ε-equation. The Clauser, constant-viscosity model is used in that region. An asymptotic eXpansion of the mean flow and matching between the three regions is carried out in order to determine the relation between skin friction and pressure gradient. Numerical calculations are done for self-similar flow. It is found that the surface shear stress is a double-valued function of the pressure gradient in a small range of pressure gradients. © 1992, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-10-10
    Description: We develop a theoretical analysis of the displacement of inviscid fluid particles and material surfaces caused by the unsteady flow around a solid body that is moving away from a wall. The body starts at position hs from the wall, and the material surface is initially parallel to the wall and at distance hL from it. A volume of fluid Df+ is displaced away from the wall and a volume Df- towards the wall. Df+ and Df- are found to be sensitive to the ratio hL/hS. The results of our specific calculations for a sphere can be extended in general to other shapes of bodies. When the sphere moves perpendicular to the wall the fluid displacement and drift volume Df+ are calculated numerically by computing the flow around the sphere. These numerical results are compared with analytical expressions calculated by approximating the flow around the sphere as a dipole moving away from the wall. The two methods agree well because displacement is an integrated effect of the fluid flow and the largest contribution to displacement is produced when the sphere is more than two radii away from the wall, i.e. when the dipole approximation adequately describes the flow. Analytic expressions for fluid displacement are used to calculate Df+ when the sphere moves at an acute angle α away from the wall. In general the presence of the wall reduces the volume displaced forward and this effect is still significant when the sphere starts 100 radii from the wall. A sphere travelling perpendicular to the wall, α = 0, displaces forward a volume Df+(0) = 4πa3hL/33/2hs when the marked surface starts downstream, or behind the sphere, and displaces a volume Df+(0) ~ 2πa3/3 forward when it is marked upstream or in front of the body. A sphere travelling at an acute angle away from the wall displaces a volume Df+(α) ~ Df+(0)cos α forward when the surface starts downstream of the sphere. When the marked surface is initially upstream of the sphere, there are two separate regions displaced forward and a simple cosine dependence on α is not found. These results can all be generalized to calculate material surfaces when the sphere moves at variable speed, displacements no longer being expressed in terms of time, but in relation to the distance travelled by the sphere.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-07-10
    Description: When scaled properly, the high-wavenumber and high-frequency parts of wind-wave spectra collapse onto universal curves. This collapse has been attributed to a dynamical balance and so these parts of the spectra have been called the equilibrium range. We develop a model for this equilibrium range based on kinematical and dynamical properties of breaking waves. Data suggest that breaking waves have high curvature at their crests, and they are modelled here as waves with discontinuous slope at their crests. Spectra are then dominated by these singularities in slope. The equilibrium range is assumed to be scale invariant, meaning that there is no privileged lengthscale. This assumption implies that: (i) the sharp-crested breaking waves have self-similar shapes, so that large breaking waves are magnified copies of the smaller breaking waves; and (ii) statistical properties of breaking waves, such as the average total length of breaking-wave fronts of a given scale, vary with the scale of the breaking waves as a power law, parameterized here with exponent D. The two-dimensional wavenumber spectrum of a scale-invariant distribution of such self-similar breaking waves is calculated and found to vary as ψ(k) ∼ k-5+D. The exponent D is calculated by assuming a scale-invariant dynamical balance in the equilibrium range. This balance is satisfied only when D = 1, so that ψ(k) ∼ k-4, in agreement with recent data. The frequency spectrum is also calculated and shown to vary as Φ(σ) ∼ σ-4, which is also in good agreement with data. The theory also gives statistics for the coverage of the sea surface with breaking waves, and, when D = 1, the fraction of sea surface covered by breaking waves is the same for all scales. Hence the equilibrium described by our model is a space-filling saturation: equilibrium at a given wavenumber is established when breaking waves of the corresponding scale cover a given, wind-dependent, fraction of the sea surface. Although both ψ (k) and Φ(σ) vary with the same power law, the two power laws arise from quite different physical causes. As the wavenumber, k, increases, ψ(k) receives contributions from smaller and smaller breaking waves. In contrast, Φ(σ) is dominated by the largest breaking waves through the whole of the equilibrium range and contains no information about the small-scale waves. This deduction from the model suggests a way of using data to distinguish the present theory from previous work.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-10-08
    Description: The structure of turbulent flow over large roughness consisting of regular arrays of cubical obstacles is investigated numerically under constant pressure gradient conditions. Results are analysed in terms of first- and second-order statistics, by visualization of instantaneous flow fields and by conditional averaging. The accuracy of the simulations is established by detailed comparisons of first- and second-order statistics with wind-tunnel measurements. Coherent structures in the log region are investigated. Structure angles are computed from two-point correlations, and quadrant analysis is performed to determine the relative importance of Q2 and Q4 events (ejections and sweeps) as a function of height above the roughness. Flow visualization shows the existence of low-momentum regions (LMRs) as well as vortical structures throughout the log layer. Filtering techniques are used to reveal instantaneous examples of the association of the vortices with the LMRs, and linear stochastic estimation and conditional averaging are employed to deduce their statistical properties. The conditional averaging results reveal the presence of LMRs and regions of Q2 and Q4 events that appear to be associated with hairpin-like vortices, but a quantitative correspondence between the sizes of the vortices and those of the LMRs is difficult to establish; a simple estimate of the ratio of the vortex width to the LMR width gives a value that is several times larger than the corresponding ratio over smooth walls. The shape and inclination of the vortices and their spatial organization are compared to recent findings over smooth walls. Characteristic length scales are shown to scale linearly with height in the log region. Whilst there are striking qualitative similarities with smooth walls, there are also important differences in detail regarding: (i) structure angles and sizes and their dependence on distance from the rough surface; (ii) the flow structure close to the roughness; (iii) the roles of inflows into and outflows from cavities within the roughness; (iv) larger vortices on the rough wall compared to the smooth wall; (v) the effect of the different generation mechanism at the wall in setting the scales of structures. © 2007 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...