ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 1982-05-01
    Description: A numerical method is developed for solution of the full nonlinear equations governing irrotational flow with a free surface and variable bed topography. It is applied to the unsteady motion of non-breaking water waves of arbitrary magnitude over a horizontal bed. All horizontal variation is approximated by truncated Fourier series. This and finite-difference representation of the time variation are the only necessary approximations. Although the method loses accuracy if the waves become sharp-crested at any stage, when applied to non-breaking waves the method is capable of high accuracy.The interaction of one solitary wave overtaking another was studied using the Fourier method. Results support experimental evidence for the applicability of the Korteweg-de Vries equation to this problem since the waves during interaction are long and low. However, some deviations from the theoretical predictions were observed - the overtaking high wave grew significantly at the expense of the low wave, and the predicted phase shift was found to be only roughly described by theory. A mechanism is suggested for all such solitary-wave interactions during which the high and fast rear wave passes fluid forward to the front wave, exchanging identities while the two waves have only partly coalesced; this explains the observed forward phase shift of the high wave. © 1982, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1981-03-01
    Description: A method for the numerical solution of steadily progressing periodic waves on irrotational flow over a horizontal bed is presented. No analytical approximations are made. A finite Fourier series, similar, to Dean’s stream function series, is used to give a set of nonlinear equations which can be solved using Newton’s method. Application to laboratory and field situations is emphasized throughout. When compared with known results for wave speed, results from the method agree closely. Results for fluid velocities are compared with experiment and agreement found to be good, unlike results from analytical theories for high waves. The problem of shoaling waves can conveniently be studied using the present method because of its validity for all wavelengths except the solitary wave limit, using the conventional first-order approximation that on a sloping bottom the waves at any depth act as if the bed were horizontal. Wave period, energy flux and mass flux are conserved. Comparisons with experimental results show good agreement. © 1981, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...