ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1995-01-01
    Description: During the LeadEx main field experiment, held in April 1992 in the Alaskan Beaufort Sea, a number of large ice stalactites were observed growing under young lead ice. Formation of the stalactites was associated with rafting of the thin, highly saline ice. The rafting caused the brine to drain rapidly from the ice at a temperature well below the freezing point of the surrounding water, which in turn caused ice to form in a hollow cylinder around the brine plume. Within a 15 h period after the rafting event, the stalactites, which were located approximately 10 m apart in a line along the upwind edge of a 150 m wide lead, had grown to a length of 2 m. A detailed structural analysis of the upper part of one of these stalactites revealed that the interior channel, down which the brine flowed, was bounded by a zone of frazil ice that developed into a shell of columnar ice. The growth of the columnar ice was directed radially outward and thecaxes of these crystals were oriented perpendicular to their growth direction. Development of the stalactites illustrates the impact ice deformation can have on the process of brine rejection in freezing leads and potentially on the thermohaline structure of the upper ocean in the immediate vicinity of the lead.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-01-01
    Description: During the LeadEx main field experiment, held in April 1992 in the Alaskan Beaufort Sea, a number of large ice stalactites were observed growing under young lead ice. Formation of the stalactites was associated with rafting of the thin, highly saline ice. The rafting caused the brine to drain rapidly from the ice at a temperature well below the freezing point of the surrounding water, which in turn caused ice to form in a hollow cylinder around the brine plume. Within a 15 h period after the rafting event, the stalactites, which were located approximately 10 m apart in a line along the upwind edge of a 150 m wide lead, had grown to a length of 2 m. A detailed structural analysis of the upper part of one of these stalactites revealed that the interior channel, down which the brine flowed, was bounded by a zone of frazil ice that developed into a shell of columnar ice. The growth of the columnar ice was directed radially outward and the c axes of these crystals were oriented perpendicular to their growth direction. Development of the stalactites illustrates the impact ice deformation can have on the process of brine rejection in freezing leads and potentially on the thermohaline structure of the upper ocean in the immediate vicinity of the lead.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-01-01
    Description: Recent observational and modeling studies indicate that the Arctic sea-ice cover is undergoing significant climate-induced changes, affecting both its extent and thickness. The thickness or, more precisely, the mass balance of the ice cover is a key climate-change indicator since it is an integrator of both the surface heat budget and the ocean heat flux. Accordingly, efforts are underway to develop and deploy in situ observing systems which, when combined with satellite remote-sensing information and numerical models, can effectively monitor and attribute changes in the mass balance of the Arctic sea-ice cover. As part of this effort, we have developed an autonomous ice mass-balance buoy (IMB), which is equipped with sensors to measure snow accumulation and ablation, ice growth and melt, and internal ice temperature, plus a satellite transmitter. The IMB is unique in its ability to determine whether changes in the thickness of the ice cover occur at the top or bottom of the ice cover, and hence provide insight into the driving forces behind the change. Since 2000, IMBs have been deployed each spring from the North Pole Environmental Observatory and in several other areas, including a few in the Beaufort Sea and Central Basin. At this point, the collective time series is too short to draw significant and specific conclusions regarding interannual and regional variability in ice mass balance. Comparisons of available data indicate that ice surface ablation is greater in the Beaufort region (67–80 cm), relative to the North Pole (0–30 cm), consistent with a longer period of melt in the more southerly location. Ablation at the bottom of the ice (22 cm), maximum ice thickness (235 cm) and maximum snow depth (28 cm) were comparable in the two regions.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-01-01
    Description: There has been a marked decline in the summer extent of Arctic sea ice over the past few decades. Data from autonomous ice mass-balance buoys can enhance our understanding of this decline. These buoys monitor changes in snow deposition and ablation, ice growth, and ice surface and bottom melt. Results from the summer of 2008 showed considerable large-scale spatial variability in the amount of surface and bottom melt. Small amounts of melting were observed north of Greenland, while melting in the southern Beaufort Sea was quite large. Comparison of net solar heat input to the ice and heat required for surface ablation showed only modest correlation. However, there was a strong correlation between solar heat input to the ocean and bottom melting. As the ice concentration in the Beaufort Sea region decreased, there was an increase in solar heat to the ocean and an increase in bottom melting.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-01-01
    Description: The morphology of the Arctic sea-ice cover undergoes large changes over an annual cycle. These changes have a significant impact on the heat budget of the ice cover, primarily by affecting the distribution of the solar radiation absorbed in the ice-ocean system. In spring, the ice is snow-covered and ridges are the prominent features. The pack consists of large angular floes, with a small amount of open water contained primarily in linear leads. By the end of summer the ice cover has undergone a major transformation. The snow cover is gone, many of the ridges have been reduced to hummocks and the ice surface is mottled with melt ponds. One surface characteristic that changes little during the summer is the appearance of the bare ice, which remains white despite significant melting. The large floes have broken into a mosaic of smaller, rounded floes surrounded by a lace of open water. Interestingly, this break-up occurs during summer when the dynamic forcing and the internal ice stress are small During the Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment we had an opportunity to observe the break-up process both on a small scale from the ice surface, and on a larger scale via aerial photographs. Floe break-up resulted in large part from thermal deterioration of the ice. The large floes of spring are riddled with cracks and leads that formed and froze during fall, winter and spring. These features melt open during summer, weakening the ice so that modest dynamic forcing can break apart the large floes into many fragments. Associated with this break-up is an increase in the number of floes, a decrease in the size of floes, an increase in floe perimeter and an increase in the area of open water.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-01-01
    Description: The amount of ice growth and ablation are key measures of the thermodynamic state of the ice cover. While ice extent and even ice thickness can be determined using remote-sensing techniques, this is not the case for the mass balance. Mass-balance measurements require an ability to attribute the change, establishing whether a change in the thickness of the ice cover occurs at the top or bottom surface and whether it is a result of growth or ablation. We have developed and implemented a tool that can be used to measure thermodynamic changes in sea-ice mass balance at individual locations: the ice mass-balance buoy (IMB). The primary limitation of the IMB is that it provides a point measurement of the ice mass balance, defined by a particular combination of snow and ice conditions. Determining if, and how, such point measurements can be extrapolated is critical to understanding the large-scale mass balance of the sea-ice cover. We explore the potential for extrapolation using mass-balance observations from the Surface Heat Budget of the Arctic (SHEBA) field experiment. During SHEBA, mass-balance measurements were made at over 100 sites covering a 100 km2 area. Results indicate that individual point measurements can provide reasonable estimates for undeformed and unponded multi-year ice, which represented more than two-thirds of the ice cover at SHEBA and is the dominant ice type in the perennial pack. A key is carefully selecting a representative location for the instrument package. The contribution of these point measurements can be amplified by integrating them with other tools designed to measure ice thickness and assimilating these combined data into sea-ice models.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...