ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (112)
  • Cambridge University Press  (100)
  • Wiley  (12)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (107)
  • Computer Science  (5)
Collection
  • Articles  (112)
Journal
  • 1
    Publication Date: 2019
    Description: Abstract Borates and borosilicates are potential candidates for the design and development of glass formulations with important industrial and technological applications. A major challenge that retards the pace of development of borate/borosilicate based glasses using predictive modeling is the lack of reliable computational models to predict the structure‐property relationships in these glasses over a wide compositional space. A major hindrance in this pursuit has been the complexity of boron‐oxygen bonding due to which it has been difficult to develop adequate B–O interatomic potentials. In this article, we have evaluated the performance of three B–O interatomic potential models recently developed by Bauchy et al [J. Non‐Cryst. Solids, 2018, 498, 294–304], Du et al [J. Am. Ceram. Soc. https://doi.org/10.1111/jace.16082] and Edèn et al [Phys. Chem. Chem. Phys., 2018, 20, 8192–8209] aiming to reproduce the short‐to‐medium range structures of sodium borosilicate glasses in the system 25 Na2O x B2O3 (75 − x) SiO2 (x = 0‐75 mol%). To evaluate the different force fields, we have computed at the density functional theory level the NMR parameters of 11B, 23Na, and 29Si of the models generated with the three potentials and the simulated MAS NMR spectra compared with the experimental counterparts. It was observed that the rigid ionic models proposed by Bauchy and Du can both reliably reproduce the partitioning between BO3 and BO4 species of the investigated glasses, along with the local environment around sodium in the glass structure. However, they do not accurately reproduce the second coordination sphere of silicon ions and the Si–O–T (T = Si, B) and B‐O‐T distribution angles in the investigated compositional space which strongly affect the NMR parameters and final spectral shape. On the other hand, the core‐shell parameterization model proposed by Edén underestimates the fraction of BO4 species of the glass with composition 25Na2O 18.4B2O3 56.6SiO2 but can accurately reproduce the shape of the 11B and 29Si MAS‐NMR spectra of the glasses investigations due to the narrower B–O–T and Si‐O‐T bond angle distributions. Finally, the effect of the number of boron atoms (also distinguishing the BO3 and BO4 units) in the second coordination sphere of the network former cations on the NMR parameters have been evaluated.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-12
    Description: Shape-forming techniques which may be useful in producing components for body armor are reviewed. The techniques are classified in three general categories, dry, wet, and plastic. The different shaping techniques are compared based on key parameters including shape limitations, rate of production, cost, and safety. The techniques are evaluated as to their suitability to be used to produce different body armor components such as breast plates, deltoid, shin and knee protection, and helmets. Dry-pressing is the current standard for producing “relatively flat” components such as breast plates, but performance is limited by the inherent problem associated with dry-pressing, namely, the difficulty in producing homogeneous green bodies because of agglomerates in the powder. Plastic processing has the potential to be useful to produce more reliable “flat” components with improved performance due to high shear mixing breaking up agglomerates. Wet (colloidal) processing techniques such as gelcasting and freeze casting may be useful to produce components with high curvature and more complex shape such as helmets. Tiles or segments may be combined to produce shaped components with increased flexibility.
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-27
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-25
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Wiley on behalf of American Ceramic Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1994-09-25
    Description: A boundary integral method is presented for analysing particle motion in a rotating fluid for flows where the Taylor number 2T is arbitrary and the Reynolds number is small. The method determines the surface traction and drag on a particle, and also the velocity field at any location in the fluid. Numerical results show that the dimensionless drag on a spherical particle translating along the rotation axis of an unbounded fluid is determined by the empirical formula D/6n = 1 +(4/7) ^”1/2 +(8/9TI)2T, which incorporates known results for the low and high Taylor number limits. Streamline portraits show that a critical Taylor number c « 50 exists at which the character of the flow changes. For 3 “ 〈 2Tcthe flow field appears as a perturbation of a Stokes flow with a superimposed swirling motion. For T 〈 2TCthe flow field develops two detached recirculating regions of trapped fluid located fore and aft of the particle. The recirculating regions grow in size and move farther from the particle with increasing Taylor number. This recirculation functions to deflect fluid away from the translating particle, thereby generating a columnar flow structure. The flow between the recirculating regions and the particle has a plug-like velocity profile, moving slightly slower than the particle and undergoing a uniform swirling motion. The flow in this region is matched to the particle velocity in a thin Ekman layer adjacent to the particle surface. A further study examines the translation of spheroidal particles. For large Taylor numbers, the drag is determined by the equatorial radius; details of the body shape are less important. © 1994, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1995-01-10
    Description: A theoretical and experimental investigation of drop motion in rotating fluids is presented. The theory describing the vertical on-axis translation of an axisymmetric rigid body through a rapidly rotating low-viscosity fluid is extended to the case of a buoyant deformable fluid drop of arbitrary viscosity. In the case that inertial and viscous effects are negligible within the bulk external flow, motions are constrained to be two-dimensional in compliance with the Taylor-Proudman theorem, and the rising drop is circumscribed by a Taylor column. Calculations for the drop shape and rise speed decouple, so that theoretical predictions for both are obtained analytically. Drop shapes are set by a balance between centrifugal and interfacial tension forces, and correspond to the family of prolate ellipsoids which would arise in the absence of drop translation. In the case of a drop rising through an unbounded fluid, the Taylor column is dissipated at a distance determined by the outer fluid viscosity, and the rise speed corresponds to that of an identically shaped rigid body. In the case of a drop rising through a sufficiently shallow plane layer of fluid, the Taylor column extends to the boundaries. In such bounded systems, the rise speed depends further on the fluid and drop viscosities, which together prescribe the efficiency of the Ekman transport over the drop and container surfaces. A set of complementary experiments is also presented, which illustrate the effects of drop viscosity on steady drop motion in bounded rotating systems. The experimental results provide qualitative agreement with the theoretical predictions; in particular, the poloidal circulation observed inside low-viscosity drops is consistent with the presence of a double Ekman layer at the interface, and is opposite to that expected to arise in non-rotating systems. The steady rise speeds observed are larger than those predicted theoretically owing to the persistence of finite inertial effects. © 1995, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1998-08-25
    Description: The motion of membrane-bound objects is important in many aspects of biology and physical chemistry. A hydrodynamic model for this Fconfiguration was proposed by Saffman & Delbrück (1975) and here it is extended to study the translation of a disk-shaped object in a viscous surface film overlying a fluid of finite depth H. A solution to the flow problem is obtained in the form of a system of dual integral equations that are solved numerically. Results for the friction coefficient of the object are given for a complete range of the two dimensionless parameters that describe the system: the ratio of the sublayer (η) to membrane (ηm) viscosities, Λ=ηR/ηmh (where R and h are the object radius and thickness of the surface film, respectively), and the sublayer thickness ratio, H/R. Scaling arguments are presented that predict the variation of the friction coefficient based upon a comparison of the different length scales that appear in the problem: the geometric length scales H and R, the naturally occurring length scale [lscr ]m=ηmh/η, and an intermediate length scale [lscr ]H= (ηmhH/η)1/2. Eight distinct asymptotic regimes are identified based upon the different possible orderings of these length scales for each of the two limits Λ[Lt ]1 and Λ[Gt ]1. Moreover, the domains of validity of available approximations are established. Finally, some representative surface velocity fields are given and the implication of these results for the characterization of hydrodynamic interactions among membrane-bound proteins adjacent to a finite-depth sublayer is discussed briefly.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1998-07-25
    Description: Oscillatory translational and rotational motions of small particles in viscous fluids are studied for two cases: (i) circular disks and (ii) nearly spherical particles. For circular disks, four motions are treated: broadside and edgewise oscillatory translations and out-of-plane and in-plane oscillatory rotations. In each case the unsteady Stokes equations are reduced to dual integral equations and solved exactly for all frequencies. Streamline portraits of the flow fields are used to understand the evolution of the velocity and pressure fields. The motions of nearly spherical particles are then studied using the reciprocal theorem. Asymptotic formulae for the hydrodynamic resistance tensors are derived and discussed.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1999-12-25
    Description: When two drops of radius R touch, surface tension drives an initially singular motion which joins them into a bigger drop with smaller surface area. This motion is always viscously dominated at early times. We focus on the early-time behaviour of the radius rm of the small bridge between the two drops. The flow is driven by a highly curved meniscus of length 2πrm and width Δ ≪ rm around the bridge, from which we conclude that the leading-order problem is asymptotically equivalent to its two-dimensional counterpart. For the case of inviscid surroundings, an exact two-dimensional solution (Hopper 1990) shows that Δ ∝ rm3 and rm ∼ (tγ/πη) ln [tγ/(ηR)]; and thus the same is true in three dimensions. We also study the case of coalescence with an external viscous fluid analytically and, for the case of equal viscosities, in detail numerically. A significantly different structure is found in which the outer-fluid forms a toroidal bubble of radius Δ ∝ rm3/2 at the meniscus and rm ∼ (tγ/4πη) ln [tγ/(ηR)]. This basic difference is due to the presence of the outer-fluid viscosity, however small. With lengths scaled by R a full description of the asymptotic flow for rm(t) ≪ 1 involves matching of lengthscales of order rm2 rm3/2, rm, 1 and probably rm7/4.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2000-08-10
    Description: Several recent papers discuss a viscous micropump consisting of Poiseuille flow of fluid between two plates with a cylinder placed along the gap perpendicular to the flow direction (e.g. Sen, Wajerski and Gad-el-Hak 1996). If the cylinder is not centred, rotating it will generate a net flow and an additional pressure drop along the channel, due to the net tangential viscous stresses along its surface. The research reported here complements existing work by examining the lubrication limit where the gaps between the cylinder and the walls are small compared to the cylinder radius. Lubrication analysis provides analytical relations among the flow rate, torque, pressure drop and rotation rate. Optimization of the flow parameters is shown in order to determine the optimal geometry of the device, which can be used by micro-electrical-mechanical systems designers. It is also shown, for example, that a device cannot be developed that achieves maximum flow rate and rotation simultaneously. In addition, since the Reynolds number can be smaller than 1, the Stokes equations are solved for this configuration using a numerical boundary integral method. The numerical results match the lubrication solution for small gaps, and determine the limits of validity for using the lubrication results.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...