ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7)
  • Cambridge University Press  (5)
  • Springer Nature  (2)
Collection
  • Articles  (7)
  • 1
    Publication Date: 2016-05-12
    Description: Lightwave-driven quasiparticle collisions on a subcycle timescale Nature 533, 7602 (2016). doi:10.1038/nature17958 Authors: F. Langer, M. Hohenleutner, C. P. Schmid, C. Poellmann, P. Nagler, T. Korn, C. Schüller, M. S. Sherwin, U. Huttner, J. T. Steiner, S. W. Koch, M. Kira & R. Huber Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances—called quasiparticles—such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron–hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-04-10
    Description: The linear stability of granular material in an unbounded uniform shear flow is considered. Linearized equations of motion derived from kinetic theories are used to arrive at a linear initial-value problem for the perturbation quantities. Two cases are investigated: {a) wavelike disturbances with time constant wavenumber vector, and (b) disturbances that will change their wave structure in time owing to a shear-induced tilting of the wavenumber vector. In both cases, the stability analysis is based on the solution operator whose norm represents the maximum possible amplification of initial perturbations. Significant transient growth is observed which has its origin in the non-normality of the involved linear operator. For case (a), regions of asymptotic instability are found in the two-dimensional wavenumber plane, whereas case (b) is found to be asymptotically stable for all physically meaningful parameter combinations. Transient linear stability phenomena may provide a viable and fast mechanism to trigger finite-amplitude effects, and therefore constitute an important part of pattern formation in rapid particulate flows. © 1994, Cambridge University Press
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-07-24
    Description: Stability theory based on a variational principle and finite-time direct-adjoint optimization commonly relies on the kinetic perturbation energy density E1.(t) =(1=Vσ) R σ e(x, t) dσ (where e(x; t) = u2=2) as a measure of disturbance size. This type of optimization typically yields optimal perturbations that are global in the fluid domain of volume V. This paper explores the use of p-norms in determining optimal perturbations for 'energy' growth over prescribed time intervals of length T. For p = 1 the traditional energy-based stability analysis is recovered, while for large p ≥ 1, localization of the optimal perturbations is observed which identifies confined regions, or 'hotspots', in the domain where significant energy growth can be expected. In addition, the p-norm optimization yields insight into the role and significance of various regions of the flow regarding the overall energy dynamics. As a canonical example, we choose to solve the 1-norm optimal perturbation problem for the simple case of two-dimensional channel flow. For such a configuration, several solutions branches emerge, each of them identifying a different energy production zone in the flow: either the centre or the walls of the domain. We study several scenarios (involving centre or wall perturbations) leading to localized energy production for different optimization time intervals. Our investigation reveals that even for this simple two-dimensional channel flow, the mechanism for the production of a highly energetic and localized perturbation is not unique in time. We show that wall perturbations are optimal (with respect to the 1-norm) for relatively short and long times, while the centre perturbations are preferred for very short and intermediate times. The developed p-norm framework is intended to facilitate worst-case analysis of shear flows and to identify localized regions supporting dominant energy growth. © 2013 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-28
    Description: We consider the nonlinear optimisation of the mixing of a passive scalar, initially arranged in two layers, in a two-dimensional plane Poiseuille flow at finite Reynolds and Péclet numbers, below the linear instability threshold. We use a nonlinear-adjoint-looping approach to identify optimal perturbations leading to maximum time-averaged energy as well as maximum mixing in a freely evolving flow, measured through the minimisation of either the passive scalar variance or the so-called mix-norm, as defined by Mathew, Mezić & Petzold (Physica D, vol. 211, 2005, pp. 23-46). We show that energy optimisation appears to lead to very weak mixing of the scalar field whereas the optimal mixing initial perturbations, despite being less energetic, are able to homogenise the scalar field very effectively. For sufficiently long time horizons, minimising the mix-norm identifies optimal initial perturbations which are very similar to those which minimise scalar variance, demonstrating that minimisation of the mix-norm is an excellent proxy for effective mixing in this finite-Péclet-number bounded flow. By analysing the time evolution from initial perturbations of several optimal mixing solutions, we demonstrate that our optimisation method can identify the dominant underlying mixing mechanism, which appears to be classical Taylor dispersion, i.e. shear-augmented diffusion. The optimal mixing proceeds in three stages. First, the optimal mixing perturbation, energised through transient amplitude growth, transports the scalar field across the channel width. In a second stage, the mean flow shear acts to disperse the scalar distribution leading to enhanced diffusion. In a final third stage, linear relaxation diffusion is observed. We also demonstrate the usefulness of the developed variational framework in a more realistic control case: mixing optimisation by prescribed streamwise velocity boundary conditions. © 2014 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-01-25
    Description: The linear amplification of axisymmetric external forcing in incompressible jet flows is investigated within a fully non-parallel framework. Experimental and numerical studies have shown that isothermal jets preferably amplify external perturbations for Strouhal numbers in the range 0. 25 ≤ St D ≤ 0. 5, depending on the operating conditions. In the present study, the optimal forcing of an incompressible jet is computed as a function of the excitation frequency. This analysis characterizes the preferred amplification as a pseudo-resonance with a dominant Strouhal number of around 0. 45. The flow response at this frequency takes the form of a vortical wavepacket that peaks inside the potential core. Its global structure is characterized by the cooperation of local shear-layer and jet-column modes. © 2013 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-06-15
    Description: Linear stability of the non-parallel Batchelor vortex is studied using global modes. This family of swirling wakes and jets has been extensively studied under the parallel-flow approximation, and in this paper we extend to more realistic non-parallel base flows. Our base flow is obtained as an exact steady solution of the Navier-Stokes equations by direct numerical simulation (with imposed axisymmetry to damp all instabilities). Global stability modes are computed by numerical simulation of the linearized equations, using the implicitly restarted Arnoldi method, and we discuss fully the numerical and convergence issues encountered. Emphasis is placed on exploring the general structure of the global spectrum, and in particular the correspondence between global modes and local absolute modes which is anticipated by weakly non-parallel asymptotic theory. We believe that our computed global modes for a weakly non-parallel vortex are the first to display this correspondence with local absolute modes. Superpositions of global modes are also studied, allowing an investigation of the amplifier dynamics of this unstable flow. For an illustrative case we find global non-modal transient growth via a convective mechanism. Generally amplifier dynamics, via convective growth, are prevalent over short time intervals, and resonator dynamics, via global mode growth, become prevalent at later times. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...