ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (4)
  • Macmillian Magazines Ltd.  (1)
  • Taylor & Francis  (1)
Collection
Publisher
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 423 (2003), S. 853-858 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The last glacial cycle was characterized by substantial millennial-scale climate fluctuations, but the extent of any associated changes in global sea level (or, equivalently, ice volume) remains elusive. Highstands of sea level can be reconstructed from dated fossil coral reef terraces, and ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-01-01
    Print ISSN: 0143-1161
    Electronic ISSN: 1366-5901
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Taylor & Francis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1992-04-01
    Description: This paper describes laboratory experiments on the flow over a three-dimensional hill in a rotating fluid. The experiments were carried out in towing tanks, placed on rotating tables. Rotation is found to have a strong influence on the separation behind the hill. The topology of the separation is found to be the same for all the flows examined. The Rossby number R in the experiments is of order 1, the maximum value being 6. The separated flow is dominated by a single trailing vortex. In the majority of cases the surface stress field has a single separation line and there are no singular points. In a few experiments at the highest Rossby numbers the observations suggest more complex stress fields but the results are inconclusive. A criterion for flow separation is sought. For values of D/L〉1, where D is the depth of the flow and L the lengthscale of the hill, separation is found to be primarily dependent on R. At sufficiently small values of R separation is suppressed and the flow remains fully attached. Linear theory is found to give a good estimate for the critical value of R for flow separation. For hills with a moderate slope (slope ≲ 1) this critical value is around 1, decreasing with increasing slope. It is postulated that the existence of a single dominant trailing vortex is due to the uplifting and subsequent turning of transverse vorticity generated by surface pressure forces upstream of the separation line. © 1992, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-08-10
    Description: Flows between ocean basins are often controlled by narrow channels and shallow sills. A multi-layer hydraulic control theory is developed for exchange flow through such constrictions. The theory is based on the inviscid shallow-water equations and extends the functional approach introduced by Gill (1977) and developed by Dalziel (1991). The flows considered are those in rectangular-cross-section channels connecting two large reservoirs, with a single constriction (sill and/or narrows). The exchange flow depends on the stratification in the two reservoirs, represented as a finite number of immiscible layers of (different) uniform density. For most cases the flow is 'controlled' at the constriction and often at other points along the channel (virtual controls) too. As with one- and two-layer hydraulics, controls are locations at which the flow passes from one solution branch to another, and at which (at least) one internal wave mode is stationary. The theory is applied to three-layer flows, which have two internal wave modes, predicting interface heights and layer fluxes from the given reservoir conditions. The theoretical results for three-layer flows are compared to a comprehensive set of laboratory experiments and found to give good agreement. The laboratory experiments also show other features of the flow, such as the formation of waves on the interfaces. The implications of the results for oceanographic flows and ocean modelling are discussed.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-01-01
    Description: An extension to the energy-conserving theory of gravity currents in rectangular rotating channels is presented, in which an upstream potential vorticity boundary condition in the current is applied. It is assumed that the fluid is inviscid; that the Boussinesq approximation applies; that the fundamental properties of momentum, energy, volume flux and potential vorticity are conserved between upstream and downstream locations; and that the flow is dissipationless. The upstream potential vorticity in the current is set through the introduction of a new parameter δ, that defines the ratio of the reference depth of the current to the ambient fluid. Flow types are established as a function δ and the rotation rate, and a fourth flow geometry is identified in addition to the three previously identified for rotating gravity currents. Detailed solutions are obtained for three cases δ = 0.5, 1.0 and 1.5, where δ 〈 1 is relevant to currents originating from a shallow source and δ 〉 1 to currents where the source region is deeper than the downstream depth, for example where a deep ocean flow encounters a plateau. The governing equations and solutions for each case are derived, quantifying the flow in terms of the depth, width and front speed. Cross-stream velocity profiles are provided for both the ambient fluid and the current. These predict the evolution of a complex circulation within the current as the rotation rate is varied. The ambient fluid exhibits similar trends to those predicted by the energy-conserving theory, with the Froude number tending to √2 at the right-hand wall at high rotation rates. The introduction of the potential vorticity boundary condition into the energy-conserving theory does not appear to have a substantial effect on the main flow parameters (such as current speed and width); however it does provide an insight into the complex dynamics of the flow within the current. © 2005 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1990-03-01
    Description: This paper describes the fluid mechanics of the natural ventilation of a space connected to a large body of stationary ambient fluid. The flows are driven by buoyancy differences between the interior and exterior fluids. Connections with the ambient fluid are high level and low level openings. Two main forms of ventilation are identified mixing ventilation and displacement ventilation. Mixing ventilation occurs when the incoming ambient fluid mixes with the fluid within the space, as is the case if dense fluid enters through a high level inlet. In this case vertical stratification is weak. Displacement ventilation occurs when dense fluid enters at low levels and displaces the lighter fluid within the space out through high level openings. A strong stable stratification develops in this case, and there is little mixing between the incoming fluid and that in the interior. Both of these modes of ventilation are studied theoretically and the results are compared with laboratory experiments. Transient draining flows which occur when a space initially contains fluid of a density different from the ambient are examined. The presence of internal sources of buoyancy allows steady states to be established, and the effects of point, line and vertically distributed sources are studied. These steady states are extensions of filling box models, with the addition of continuous exchange of fluid with the environment outside the space. A major result of this work is that the form of the stratification within the space depends on the entrainment caused by the convective elements (plumes) produced by the buoyancy sourcesfbut is independent of the strength of the sources. The strength of the stratification and the magnitudes of the velocities do, however, depend on the source strength. The effects of opening size(s) and configurations are determined, and criteria for producing a particular stratification within the space are established. Applications of this work to the ventilation of buildings are presented. © 1990, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...