ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (66)
  • MDPI  (34)
  • Cambridge University Press  (32)
  • Geography  (49)
  • Architecture, Civil Engineering, Surveying  (23)
  • Mathematics  (12)
Collection
  • Articles  (66)
Journal
  • 1
    Electronic Resource
    Electronic Resource
    Cambridge : Cambridge University Press
    Architectural research quarterly 2 (1996), S. 4-5 
    ISSN: 1359-1355
    Source: Cambridge Journals Digital Archives
    Topics: Architecture, Civil Engineering, Surveying
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: To facilitate the advances in Sentinel-2A products for land cover from Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat imagery, Sentinel-2A MultiSpectral Instrument Level-1C (MSIL1C) images are investigated for large-scale vegetation mapping in an arid land environment that is located in the Ili River delta, Kazakhstan. For accurate classification purposes, multi-resolution segmentation (MRS) based extended object-guided morphological profiles (EOMPs) are proposed and then compared with conventional morphological profiles (MPs), MPs with partial reconstruction (MPPR), object-guided MPs (OMPs), OMPs with mean values (OMPsM), and object-oriented (OO)-based image classification techniques. Popular classifiers, such as C4.5, an extremely randomized decision tree (ERDT), random forest (RaF), rotation forest (RoF), classification via random forest regression (CVRFR), ExtraTrees, and radial basis function (RBF) kernel-based support vector machines (SVMs) are adopted to answer the question of whether nested dichotomies (ND) and ensembles of ND (END) are truly superior to direct and error-correcting output code (ECOC) multiclass classification frameworks. Finally, based on the results, the following conclusions are drawn: 1) the superior performance of OO-based techniques over MPs, MPPR, OMPs, and OMPsM is clear for Sentinel-2A MSIL1C image classification, while the best results are achieved by the proposed EOMPs; 2) the superior performance of ND, ND with class balancing (NDCB), ND with data balancing (NDDB), ND with random-pair selection (NDRPS), and ND with further centroid (NDFC) over direct and ECOC frameworks is not confirmed, especially in the cases of using weak classifiers for low-dimensional datasets; 3) from computationally efficient, high accuracy, redundant to data dimensionality and easy of implementations points of view, END, ENDCB, ENDDB, and ENDRPS are alternative choices to direct and ECOC frameworks; 4) surprisingly, because in the ensemble learning (EL) theorem, “weaker” classifiers (ERDT here) always have a better chance of reaching the trade-off between diversity and accuracy than “stronger” classifies (RaF, ExtraTrees, and SVM here), END with ERDT (END-ERDT) achieves the best performance with less than a 0.5% difference in the overall accuracy (OA) values, but is 100 to 10000 times faster than END with RaF and ExtraTrees, and ECOC with SVM while using different datasets with various dimensions; and, 5) Sentinel-2A MSIL1C is better choice than the land cover products from MODIS and Landsat imagery for vegetation species mapping in an arid land environment, where the vegetation species are critically important, but sparsely distributed.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: Rolling bearings are the most important parts in rotating machinery, and one of the most vulnerable parts to failure. The rolling bearing is a cyclic symmetrical structure that is stable under normal operating conditions. However, when the rolling bearing fails, its symmetry is destroyed, resulting in unstable performance and causing major accidents. If the performance of rolling bearings can be monitored and evaluated in real time, maintenance strategies can be implemented promptly. In this paper, by using wavelet packet energy entropy (WPEE), the early fault-free features of bearing and the failure samples of similar bearings are decomposed firstly, and the energy value is extracted as the original feature, simultaneously. Secondly, a radial basis function (RBF) neural network model is established by using early fault-free features and similar bearing failure characteristics. The bearing full-life data characteristics of the extracted features are added into the RBF model in an iterative manner to obtain performance degradation Indicator. Boxplot was introduced as an adaptive threshold method to determine the failure threshold. Finally, the results are verified by empirical mode decomposition and Hilbert envelope demodulation. A bearing accelerated life experiment is performed to validate the feasibility and validity of the proposed method. The experimental results show that the method can diagnose early fault points in time and evaluate the degree of bearing degradation, which is of great significance for industrial practical applications.
    Electronic ISSN: 2073-8994
    Topics: Mathematics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: The maglev train is a whole new method of transportation without wheels, consisting of 20 groups of symmetry suspension units. The magnetic levitation system plays a major role in suspending the maglev train stably and following the track quickly with the desired gap. However, vertical track irregularity in the maglev train line has a dreadful effect on the tracking performance of the magnetic levitation system. The investigations carried out by our team have revealed that the fluctuation of the suspension gap becomes more and more serious with increases in running speed. In this paper, a mathematical model with consideration of vertical track irregularity is established. In order to overcome and suppress the fluctuation of the suspension gap, we propose a new strategy which includes installing an accelerometer on the electromagnet to address this problem. This strategy has already been successfully implemented and applied to the suspension controller for a magnetic levitation system in the Changsha maglev express. Real operation data indicates the tracking performance of the magnetic levitation system was obviously improved.
    Electronic ISSN: 2073-8994
    Topics: Mathematics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: For the planning and sustainable management of forest resources, well-managed plantations are of great significance to mitigate the decrease of forested areas. Monitoring these planted forests is essential for forest resource inventories. In this study, two ALOS PALSAR-2 quad-polarimetric synthetic aperture radar (SAR) images and ground measurements were employed to estimate growing stem volume (GSV) of Chinese fir plantations located in a hilly area of southern China. To investigate the relationships between forest GSV and polarization characteristics, single and fused variables were derived by the Yamaguchi decomposition and the saturation value of GSV was estimated using a semi-exponential empirical model as a base model. Based on the estimated saturation values and relative root mean square error (RRMSE), the single and fused characteristics and corresponding models were selected and integrated, which led to a novel saturation-based multivariate method used to improve the GSV estimation and mapping of Chinese fir plantations. The new findings included: (1) All the original polarimetric characteristics, statistically, were not significantly correlated with the forest GSV, and their logarithm and ratio transformation fused variables greatly improved the correlations, thus the estimation accuracy of the forest GSV. (2) The logarithm transformation of surface scattering resulted in the greatest saturation, value but the logarithm transformation of double-bounce scattering resulted in the smallest RRMSE of the GSV estimates. (3) Compared with the single transformations, the fused variables led to more reasonable saturation values and obviously reduced the values of RRMSE. (4) The saturation-based multivariate method led to more accurate estimates of the forest GSV than the univariate method, with the smallest value (29.64%) of RRMSE achieved using the set of six variables. This implied that the novel saturation-based multivariate method provided greater potential to improve the estimation and mapping of the forest GSV.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Graph-based embedding methods receive much attention due to the use of graph and manifold information. However, conventional graph-based embedding methods may not always be effective if the data have high dimensions and have complex distributions. First, the similarity matrix only considers local distance measurement in the original space, which cannot reflect a wide variety of data structures. Second, separation of graph construction and dimensionality reduction leads to the similarity matrix not being fully relied on because the original data usually contain lots of noise samples and features. In this paper, we address these problems by constructing two adjacency graphs to stand for the original structure featuring similarity and diversity of the data, and then impose a rank constraint on the corresponding Laplacian matrix to build a novel adaptive graph learning method, namely locality sensitive discriminative unsupervised dimensionality reduction (LSDUDR). As a result, the learned graph shows a clear block diagonal structure so that the clustering structure of data can be preserved. Experimental results on synthetic datasets and real-world benchmark data sets demonstrate the effectiveness of our approach.
    Electronic ISSN: 2073-8994
    Topics: Mathematics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018
    Description: Image registration is a core technology of many different image processing areas and is widely used in the remote sensing community. The accuracy of image registration largely determines the effect of subsequent applications. In recent years, phase correlation-based image registration has drawn much attention because of its high accuracy and efficiency as well as its robustness to gray difference and even slight changes in content. Many researchers have reported that the phase correlation method can acquire a sub-pixel accuracy of 1 / 10 or even 1 / 100 . However, its performance is acquired only in the case of translation, which limits the scope of the application of the method. However, there are few reports on the estimation of scales and angles based on the phase correlation method. To take advantage of the high accuracy property and other merits of phase correlation-based image registration and extend it to estimate the similarity transform, we proposed a novel algorithm, the Multilayer Polar Fourier Transform (MPFT), which uses a fast and accurate polar Fourier transform with different scaling factors to calculate the log-polar Fourier transform. The structure of the polar grids of MPFT is more similar to the one of the log-polar grid. In particular, for rotation estimation only, the polar grid of MPFT is the calculation grid. To validate its effectiveness and high accuracy in estimating angles and scales, both qualitative and quantitative experiments were carried out. The quantitative experiments included a numerical simulation as well as synthetic and real data experiments. The experimental results showed that the proposed method, MPFT, performs better than the existing phase correlation-based similarity transform estimation methods, the Pseudo-polar Fourier Transform (PPFT) and the Multilayer Fractional Fourier Transform method (MLFFT), and the classical feature-based registration method, Scale-Invariant Feature Transform (SIFT), and its variant, ms-SIFT.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: Understanding the energy demand of a city’s housing stock is an important focus for local and national administrations to identify strategies for reducing carbon emissions. Building energy simulation offers a promising approach to understand energy use and test plans to improve the efficiency of residential properties. As part of this, models of the urban stock must be created that accurately reflect its size, shape and composition. However, substantial effort is required in order to generate detailed urban scenes with the appropriate level of attribution suitable for spatially explicit simulation of large areas. Furthermore, the computational complexity of microsimulation of building energy necessitates consideration of approaches that reduce this processing overhead. We present a workflow to automatically generate 2.5D urban scenes for residential building energy simulation from UK mapping datasets. We describe modelling the geometry, the assignment of energy characteristics based upon a statistical model and adopt the CityGML EnergyADE schema which forms an important new and open standard for defining energy model information at the city-scale. We then demonstrate use of the resulting urban scenes for estimating heating demand using a spatially explicit building energy microsimulation tool, called CitySim+, and evaluate the effects of an off-the-shelf geometric simplification routine to reduce simulation computational complexity.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: We present a novel low-cost visual odometry method of estimating the ego-motion (self-motion) for ground vehicles by detecting the changes that motion induces on the images. Different from traditional localization methods that use differential global positioning system (GPS), precise inertial measurement unit (IMU) or 3D Lidar, the proposed method only leverage data from inexpensive visual sensors of forward and backward onboard cameras. Starting with the spatial-temporal synchronization, the scale factor of backward monocular visual odometry was estimated based on the MSE optimization method in a sliding window. Then, in trajectory estimation, an improved two-layers Kalman filter was proposed including orientation fusion and position fusion. Where, in the orientation fusion step, we utilized the trajectory error space represented by unit quaternion as the state of the filter. The resulting system enables high-accuracy, low-cost ego-pose estimation, along with providing robustness capability of handing camera module degradation by automatic reduce the confidence of failed sensor in the fusion pipeline. Therefore, it can operate in the presence of complex and highly dynamic motion such as enter-in-and-out tunnel entrance, texture-less, illumination change environments, bumpy road and even one of the cameras fails. The experiments carried out in this paper have proved that our algorithm can achieve the best performance on evaluation indexes of average in distance (AED), average in X direction (AEX), average in Y direction (AEY), and root mean square error (RMSE) compared to other state-of-the-art algorithms, which indicates that the output results of our approach is superior to other methods.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: Due to the high temporal resolution (e.g., 10 s) required, and large data volumes (e.g., 360 images per hour) that result, there remain significant issues in processing continuous ground-based synthetic aperture radar (GBSAR) data. This includes the delay in creating displacement maps, the cost of computational memory, and the loss of temporal evolution in the simultaneous processing of all data together. In this paper, a new processing chain for real-time GBSAR (RT-GBSAR) is proposed on the basis of the interferometric SAR small baseline subset concept, whereby GBSAR images are processed unit by unit. The outstanding issues have been resolved by the proposed RT-GBSAR chain with three notable features: (i) low requirement of computational memory; (ii) insights into the temporal evolution of surface movements through temporarily-coherent pixels; and (iii) real-time capability of processing a theoretically infinite number of images. The feasibility of the proposed RT-GBSAR chain is demonstrated through its application to both a fast-changing sand dune and a coastal cliff with submillimeter precision.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...