ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-12
    Description: SUMMARYCassava (Manihot esculenta Crantz) is an economically important root crop in Thailand, which is ranked the world's top cassava exporting country. Production of cassava can be hampered by several pathogens and pests. Cassava anthracnose disease (CAD) is an important disease caused by the fungus Colletotrichum gloeosporioides f. sp. manihotis. The pathogen causes severe stem damage resulting in yield reductions and lack of stem cuttings available for planting. Molecular studies of cassava response to CAD will provide useful information for cassava breeders to develop new varieties with resistance to the disease. The current study aimed to identify quantitative trait loci (QTL) and DNA markers associated with resistance to CAD. A total of 200 lines of two F1 mapping populations were generated by reciprocal crosses between the varieties Huabong60 and Hanatee. The F1 samples were genotyped based on simple sequence repeat (SSR) and expressed sequence tag-SSR markers and a genetic linkage map was constructed using the JoinMap®/version3·0 program. The results showed that the map consisted of 512 marker loci distributed on 24 linkage groups with a map length of 1771·9 centimorgan (cM) and a mean interval between markers of 5·7 cM. The genetic linkage map was integrated with phenotypic data for the response to CAD infection generated by a detached leaf assay test. A total of three QTL underlying the trait were identified on three linkage groups using the MapQTL®/version4·0 program. Those DNA markers linked to the QTL that showed high statistically significant values with the CAD resistance trait were identified for gene annotation analysis and 23 candidate resistance genes to CAD infection were identified.
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-19
    Description: SUMMARYCassava (Manihot esculenta Crantz) root yield measured as fresh weight (hereafter root yield) is declining in much of Asia and Africa. The current study aimed to identify quantitative trait loci (QTL) underlying both root and starch fresh weights in F1 cassava. Eight QTL were associated with root yield, underlying 12·9–40·0% of the phenotypic variation (PVE). Nine QTL were associated with starch content, underlying 11·3–27·3% of the PVE. Quantitative trait loci were identified from four different environments that encompassed two locations and 3 years. Consistent QTL for root yield, YLD5_R11 and YLD8_L09 on linkage group (LG) 16, were detected across years and locations. Quantitative trait loci for starch content, ST3_R09, ST6_R10 and ST7_R11 on LG 11, were found across 3 years. Co-localization of QTL for both traits with positive correlation was detected between YLD3_R10 and ST5_R10 on LG 9. Candidate genes within the QTL that were consistent across multiple environments were identified based on cassava genome sequences. Genes predicted to encode for glycosyl hydrolases, uridine 5’-diphospho-(UDP)-glucuronosyl transferases and UDP-glucosyl transferases were found among the 44 genes located within the region containing the QTL controlling starch content. Sixteen genes predicted to encode proteins that were possibly associated with root yield were identified. The QTL controlling root yield and starch content in the current study will be useful for molecular breeding of cassava through marker-assisted selection. The identification of candidate genes underlying both traits will be useful both as markers and for gene expression studies.
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1973-04-01
    Print ISSN: 0008-4077
    Electronic ISSN: 1480-3313
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-05-03
    Description: To fully understand the carbon (C) cycle impacts of forest fires, both C emissions during the fire and post-disturbance fluxes need to be considered. The latter are dominated by soil surface CO2 flux (Fs), which is still subject to large uncertainties. Fire is generally regarded as the most important factor influencing succession in the boreal forest biome and fire dependant species such as jack pine are widespread. In May 2007, we took concurrent Fs and soil temperature (Ts) measurements in boreal jack pine fire scars aged between 0 and 59 years since fire. To allow comparisons between scars, we adjusted Fs for Ts (FsT) using a Q10 of 2. Mean FsT ranged from 0.56 (± 0.30 sd) to 1.94 (± 0.74 sd) μmol CO2 m−2 s−1. Our results indicate a difference in mean FsT between recently burned (4 to 8 days post fire) and non-burned mature (59 years since fire) forest (P 〈 0.001), though no difference was detected between recently burned (4 to 8 days post fire) and non-burned young (16 years since fire) forest (P = 0.785). There was a difference in mean FsT between previously young (16 years since fire) and intermediate aged (32 years since fire) scars that were both subject to fire in 2007 (P 〈 0.001). However, there was no difference in mean FsT between mature (59 years since fire) and intermediate aged (32 years since fire) scars that were both subjected to fire in 2007 (P = 0.226). Furthermore, there was no difference in mean FsT between mature (59 years since fire) and young scars (16 years since fire) that were both subjected to fire in 2007 (P = 0.186). There was an increase in FsT with time since fire for the chronosequence 0, 16 and 59 years post fire (P 〈 0.001). Our results lead us to hypothesise that the autotrophic:heterotrophic soil respiration ratio increases over post-fire successional time in boreal jack pine systems, though this should be explored in future research. The results of this study contribute to a better quantitative understanding of Fs in boreal jack pine fire scars and will facilitate meta-analyses of Fs in fire scar chronosequences.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-09-03
    Description: To fully understand the carbon (C) cycle impacts of forest fires, both C emissions during the fire and post-disturbance fluxes need to be considered. The latter are dominated by soil respiration (Rs), which is still subject to large uncertainties. This research investigates Rs in a boreal jack pine fire scar chronosequence at Sharpsand Creek, Ontario, Canada. During two field campaigns in 2006 and 2007, Rs was measured in a chronosequence of fire scars aged between 0 and 59 years since the last fire. Mean Rs per fire scar was adjusted for soil temperature (Ts) and soil moisture (Ms) (denoted RST,M). RST,M ranged from 0.56 μmol CO2/m2/s (32 years post fire) to 8.18 μmol CO2/m2/s (58 years post fire). The coefficient of variation (CV) of RST,M ranged from 20% (16 years post fire) to 56% (58 years post fire). Across the field site, there was a statistically highly significant exponential relationship between Rs adjusted for soil organic carbon (Cs) and Ts (P0.1) difference could be detected between recently burned (4 to 8 days post fire) and unburned young forest. There were significant differences in RST,M between recently burned (4 to 8 days post fire) scar age categories that differed in their burn history, with between-fire intervals of 32 vs. 16 years (P
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...