ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ELSEVIER SCIENCE BV  (2)
  • COPERNICUS GESELLSCHAFT MBH  (1)
  • Frontiers Media  (1)
  • 1
    Publication Date: 2021-03-26
    Description: Warming air and sea temperatures, longer open-water seasons and sea-level rise collectively promote the erosion of permafrost coasts in the Arctic, which profoundly impacts organic matter pathways. Although estimates on organic carbon (OC) fluxes from erosion exist for some parts of the Arctic, little is known about how much OC is transformed into greenhouse gases (GHGs). In this study we investigated two different coastal erosion scenarios on Qikiqtaruk – Herschel Island (Canada) and estimate the potential for GHG formation. We distinguished between a delayed release represented by mud debris draining a coastal thermoerosional feature and a direct release represented by cliff debris at a low collapsing bluff. Carbon dioxide (CO2) production was measured during incubations at 4°C under aerobic conditions for two months and were modeled for four months and a full year. Our incubation results show that mud debris and cliff debris lost a considerable amount of OC as CO2 (2.5 ± 0.2 and 1.6 ± 0.3% of OC, respectively). Although relative OC losses were highest in mineral mud debris, higher initial OC content and fresh organic matter in cliff debris resulted in a ∼three times higher cumulative CO2 release (4.0 ± 0.9 compared to 1.4 ± 0.1 mg CO2 gdw–1), which was further increased by the addition of seawater. After four months, modeled OC losses were 4.9 ± 0.1 and 3.2 ± 0.3% in set-ups without seawater and 14.3 ± 0.1 and 7.3 ± 0.8% in set-ups with seawater. The results indicate that a delayed release may support substantial cycling of OC at relatively low CO2 production rates during long transit times onshore during the Arctic warm season. By contrast, direct erosion may result in a single CO2 pulse and less substantial OC cycling onshore as transfer times are short. Once eroded sediments are deposited in the nearshore, highest OC losses can be expected. We conclude that the release of CO2 from eroding permafrost coasts varies considerably between erosion types and residence time onshore. We emphasize the importance of a more comprehensive understanding of OC degradation during the coastal erosion process to improve thawed carbon trajectories and models.
    Electronic ISSN: 2296-6463
    Topics: Geosciences
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-09-14
    Description: Permafrost is a distinct feature of the terrestrial Arctic and is vulnerable to climate warming. Permafrost degrades in different ways, including deepening of a seasonally unfrozen surface and localized but rapid development of deep thaw features. Pleistocene ice-rich permafrost with syngenetic ice-wedges, termed Yedoma deposits, are widespread in Siberia, Alaska, and Yukon, Canada and may be especially prone to rapid-thaw processes. Freeze-locked organic matter in such deposits can be re-mobilized on short time-scales and contribute to a carbon cycle climate feedback. Here we synthesize the characteristics and vulnerability of Yedoma deposits by synthesizing studies on the Yedoma origin and the associated organic carbon pool. We suggest that Yedoma deposits accumulated under periglacial weathering, transport, and deposition dynamics in non-glaciated regions during the late Pleistocene until the beginning of late glacial warming. The deposits formed due to a combination of aeolian, colluvial, nival, and alluvial deposition and simultaneous ground ice accumulation. We found up to 130 gigatons organic carbon in Yedoma, parts of which are well-preserved and available for fast decomposition after thaw. Based on incubation experiments, up to 10% of the Yedoma carbon is considered especially decomposable and may be released upon thaw. The substantial amount of ground ice in Yedoma makes it highly vulnerable to disturbances such as thermokarst and thermo-erosion processes. Mobilization of permafrost carbon is expected to increase under future climate warming. Our synthesis results underline the need of accounting for Yedoma carbon stocks in next generation Earth-System-Models for a more complete representation of the permafrost-carbon feedback.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-08-12
    Description: The changing climate in the Arctic has a profound impact on permafrost coasts, which are subject to intensified thermokarst formation and erosion. Consequently, terrestrial organic matter (OM) is mobilized and transported into the nearshore zone. Yet, little is known about the fate of mobilized OM before and after entering the ocean. In this study we investigated a retrogressive thaw slump (RTS) on Qikiqtaruk - Herschel Island (Yukon coast, Canada). The RTS was classified into an undisturbed, a disturbed (thermokarst-affected) and a nearshore zone and sampled systematically along transects. Samples were analyzed for total and dissolved organic carbon and nitrogen (TOC, DOC, TN, DN), stable carbon isotopes (δ13C-TOC, δ13C-DOC), and dissolved inorganic nitrogen (DIN), which were compared between the zones. C/N-ratios, δ13C signatures, and ammonium (NH4-N) concentrations were used as indicators for OM degradation along with biomarkers (n-alkanes, n-fatty acids, n-alcohols). Our results show that OM significantly decreases after disturbance with a TOC and DOC loss of 77 and 55% and a TN and DN loss of 53 and 48%, respectively. C/N-ratios decrease significantly, whereas NH4-N concentrations slightly increase in freshly thawed material. In the nearshore zone, OM contents are comparable to the disturbed zone. We suggest that the strong decrease in OM is caused by initial dilution with melted massive ice and immediate offshore transport via the thaw stream. In the mudpool and thaw stream, OM is subject to degradation, whereas in the slump floor the nitrogen decrease is caused by recolonizing vegetation. Within the nearshore zone of the ocean, heavier portions of OM are directly buried in marine sediments close to shore. We conclude that RTS have profound impacts on coastal environments in the Arctic. They mobilize nutrients from permafrost, substantially decrease OM contents and provide fresh water and nutrients at a point source.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-08
    Description: Ongoing climate warming in the western Canadian Arctic is leading to thawing of permafrost soils and subsequent mobilization of its organic matter pool. Part of this mobilized terrestrial organic matter enters the aquatic system as dissolved organic matter (DOM) and is laterally transported from land to sea. Mobilized organic matter is an important source of nutrients for ecosystems, as it is available for microbial breakdown, and thus a source of greenhouse gases. We are beginning to understand spatial controls on the release of DOM as well as the quantities and fate of this material in large Arctic rivers. Yet, these processes remain systematically understudied in small, high-Arctic watersheds, despite the fact that these watersheds experience the strongest warming rates in comparison. Here, we sampled soil (active layer and permafrost) and water (porewater and stream water) from a small ice wedge polygon (IWP) catchment along the Yukon coast, Canada, during the summer of 2018. We assessed the organic carbon (OC) quantity (using dissolved (DOC) and particulate OC (POC) concentrations and soil OC content), quality (δ13C DOC, optical properties and source apportionment) and bioavailability (incubations; optical indices such as slope ratio, Sr; and humification index, HIX) along with stream water properties (temperature, T; pH; electrical conductivity, EC; and water isotopes). We classify and compare different landscape units and their soil horizons that differ in microtopography and hydrological connectivity, giving rise to differences in drainage capacity. Our results show that porewater DOC concentrations and yield reflect drainage patterns and waterlogged conditions in the watershed. DOC yield (in mg DOC g−1 soil OC) generally increases with depth but shows a large variability near the transition zone (around the permafrost table). Active-layer porewater DOC generally is more labile than permafrost DOC, due to various reasons (heterogeneity, presence of a paleo-active-layer and sampling strategies). Despite these differences, the very long transport times of porewater DOC indicate that substantial processing occurs in soils prior to release into streams. Within the stream, DOC strongly dominates over POC, illustrated by ratios around 50, yet storm events decrease that ratio to around 5. Source apportionment of stream DOC suggests a contribution of around 50 % from permafrost/deep-active-layer OC, which contrasts with patterns observed in large Arctic rivers (12 ± 8 %; Wild et al., 2019). Our 10 d monitoring period demonstrated temporal DOC patterns on multiple scales (i.e., diurnal patterns, storm events and longer-term trends), underlining the need for high-resolution long-term monitoring. First estimates of Black Creek annual DOC (8.2 ± 6.4 t DOC yr−1) and POC (0.21 ± 0.20 t yr−1) export allowed us to make a rough upscaling towards the entire Yukon Coastal Plain (34.51 ± 2.7 kt DOC yr−1 and 8.93 ± 8.5 kt POC yr−1). Rising Arctic temperatures, increases in runoff, soil organic matter (OM) leaching, permafrost thawing and primary production are likely to increase the net lateral OC flux. Consequently, altered lateral fluxes may have strong impacts on Arctic aquatic ecosystems and Arctic carbon cycling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...