ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2009-03-31
    Description: At CNR-IMAA, an aerosol lidar system is operative since May 2000 in the framework of EARLINET (European Aerosol Research Lidar Network), the first lidar network for tropospheric aerosol study on continental scale. High quality multi-wavelength measurements make this system a reference point for the validation of data products provided by CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations), the first satellite-borne lidar specifically designed for aerosol and cloud study. Since 14 June 2006, devoted measurements are performed at CNR-IMAA in coincidence of CALIPSO overpasses. For the first time, results on 1-year comparisons between ground-based multi-wavelength Raman lidar measurements and corresponding CALIPSO lidar Level 1 profiles are presented. A methodology for the comparison is presented and discussed into details. Cases with the detection of cirrus clouds in CALIPSO data are separately analysed for taking into account eventual multiple scattering effects. For cirrus cloud cases, few cases are available to draw any conclusions. For clear sky conditions, the comparison shows good performances of the CALIPSO on-board lidar: the mean relative difference between the ground-based and CALIPSO Level 1 measurements is always within its standard deviation at all altitudes, with a mean difference in the 3–8 km altitude range of (−2±12)%. At altitude ranges corresponding to the typical PBL height observed at CNR-IMAA, a mean underestimation of (−24±20)% is observed in CALIPSO data, probably due to the difference in the aerosol content at the location of PEARL and CALIPSO ground-track location. Finally, the mean differences are on average lower for the closest overpasses (at about 40 km), with an increment of the differences at all altitude ranges when the 80 km overpasses are considered.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-08-24
    Description: The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) has been operating since March 2002 onboard of the ENVIronmental SATellite of the European Space Agency (ESA). The high resolution (0.035 cm−1 full width half maximum, unapodized) limb-emission measurements acquired by MIPAS in the first two years of operation have very good geographical and temporal coverage and have been re-processed by ESA with the most recent versions (4.61 and 4.62) of the inversion algorithms. The products of this processing chain are pressures at the tangent points and geolocated profiles of temperature and of the volume mixing ratios of six key atmospheric constituents: H2O, O3, HNO3, CH4, N2O and NO2. As for all the measurements made with innovative instruments and techniques, this data set requires a thorough validation. In this paper we present a geophysical validation of the temperature profiles derived from MIPAS measurements by the ESA retrieval algorithm. The validation is carried-out by comparing MIPAS temperature with correlative measurements made by radiosondes, lidars, in-situ and remote sensors operated either from the ground or stratospheric balloons. The results of the intercomparison indicate that the bias of the MIPAS profiles is generally smaller than 1 or 2 K depending on altitude. Furthermore we find that, especially at the edges of the altitude range covered by the MIPAS scan, the random error estimated from the intercomparison is larger (typically by a factor of two to three) than the corresponding estimate derived on the basis of error propagation. In this work we also characterize the discrepancies between MIPAS temperature and the temperature fields resulting from the analyses of the European Centre for Medium-range Weather Forecasts (ECMWF). The bias and the standard deviation of these discrepancies are consistent with those obtained when comparing MIPAS to correlative measurements; however, in this case the detected bias has a peculiar behavior as a function of altitude. This behavior is very similar to that observed in previous studies and is suspected to be due to vertical oscillations in the ECMWF temperature. The current understanding is that, at least in the upper stratosphere (above ≈10 hPa), these oscillations are caused by a discrepancy between model biases and biases of assimilated radiances from primarily nadir sounders.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-08
    Description: Systematic measurements of dust concentration profiles at continental scale were recently made possible by the development of synergistic retrieval algorithms using combined lidar and sun photometer data and the establishment of robust remote-sensing networks in the framework of Aerosols, Clouds, and Trace gases Research InfraStructure Network (ACTRIS)/European Aerosol Research Lidar Network (EARLINET). We present a methodology for using these capabilities as a tool for examining the performance of dust transport models. The methodology includes considerations for the selection of a suitable dataset and appropriate metrics for the exploration of the results. The approach is demonstrated for four regional dust transport models (BSC-DREAM8b v2, NMMB/BSC-DUST, DREAMABOL, DREAM8-NMME-MACC) using dust observations performed at 10 ACTRIS/EARLINET stations. The observations, which include coincident multi-wavelength lidar and sun photometer measurements, were processed with the Lidar-Radiometer Inversion Code (LIRIC) to retrieve aerosol concentration profiles. The methodology proposed here shows advantages when compared to traditional evaluation techniques that utilize separately the available measurements such as separating the contribution of dust from other aerosol types on the lidar profiles and avoiding model assumptions related to the conversion of concentration fields to aerosol extinction values. When compared to LIRIC retrievals, the simulated dust vertical structures were found to be in good agreement for all models with correlation values between 0.5 and 0.7 in the 1 to 6 km range, where most of dust is typically observed. The absolute dust concentration was typically underestimated with mean bias values of −40 to −20 μg m−3 at 2 km, the altitude of maximum mean concentration. The reported differences among the models found in this comparison indicate the benefit of the systematic use of the proposed approach in future dust model evaluation studies.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-09-29
    Description: At CNR-IMAA, an aerosol lidar system has operated since May 2000 in the framework of EARLINET (European Aerosol Research Lidar Network), the first lidar network for tropospheric aerosol study on a continental scale. High quality multi-wavelength measurements make this system a reference point for the validation of data products provided by CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations), the first satellite-borne lidar specifically designed for aerosol and cloud study. Since 14 June 2006, dedicated measurements have been performed at CNR-IMAA in coincidence with CALIPSO overpasses. For the first time, results on 1-year comparisons between ground-based multi-wavelength Raman lidar measurements and corresponding CALIPSO lidar Level 1 profiles are presented. A methodology for the comparison is presented and discussed in detail. Night-time cases are considered to take advantage from Raman capability of the ground based lidar. Cases with the detection of cirrus clouds in CALIPSO data are separately analysed for taking into account multiple scattering effects. For cirrus cloud cases, few cases are available to draw any conclusions. For clear sky conditions, the comparison shows good performances of the CALIPSO on-board lidar: the mean relative difference between the ground-based and CALIPSO Level 1 measurements is always within its standard deviation at all altitudes, with a mean difference in the 3–8 km altitude range of (−2±12)%. At altitude ranges corresponding to the typical PBL height observed at CNR-IMAA, a mean difference of (−24±20)% is observed in CALIPSO data, probably due to the difference in the aerosol content at the location of PEARL and CALIPSO ground-track location. Finally, the mean differences are on average lower at all altitude ranges for the closest overpasses (at about 40 km) respect to the 80-km overpasses.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-04-29
    Description: The eruption of the Icelandic volcano Eyjafjallajökull in April–May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April–26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at http://www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at http://www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5–15 May), material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-06-14
    Description: Water vapour (H2O) is one of the operationally retrieved key species of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument aboard the Environmental Satellite (ENVISAT) which was launched into its sun-synchronous orbit on 1 March 2002 and operated until April 2012. Within the MIPAS validation activities, independent observations from balloons, aircraft, satellites, and ground-based stations have been compared to European Space Agency (ESA) version 4.61 operational H2O data comprising the time period from July 2002 until March 2004 where MIPAS measured with full spectral resolution. No significant bias in the MIPAS H2O data is seen in the lower stratosphere (above the hygropause) between about 15 and 30 km. Differences of H2O quantities observed by MIPAS and the validation instruments are mostly well within the combined total errors in this altitude region. In the upper stratosphere (above about 30 km), a tendency towards a small positive bias (up to about 10%) is present in the MIPAS data when compared to its balloon-borne counterpart MIPAS-B, to the satellite instruments HALOE (Halogen Occultation Experiment) and ACE-FTS (Atmospheric Chemistry Experiment, Fourier Transform Spectrometer), and to the millimeter-wave airborne sensor AMSOS (Airborne Microwave Stratospheric Observing System). In the mesosphere the situation is unclear due to the occurrence of different biases when comparing HALOE and ACE-FTS data. Pronounced deviations between MIPAS and the correlative instruments occur in the lowermost stratosphere and upper troposphere, a region where retrievals of H2O are most challenging. Altogether it can be concluded that MIPAS H2O profiles yield valuable information on the vertical distribution of H2O in the stratosphere with an overall accuracy of about 10 to 30% and a precision of typically 5 to 15% – well within the predicted error budget, showing that these global and continuous data are very valuable for scientific studies. However, in the region around the tropopause retrieved MIPAS H2O profiles are less reliable, suffering from a number of obstacles such as retrieval boundary and cloud effects, sharp vertical discontinuities, and frequent horizontal gradients in both temperature and H2O volume mixing ratio (VMR). Some profiles are characterized by retrieval instabilities.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-02-29
    Description: During the eruption of Eyjafjallajökull in April–May 2010 multi-wavelength Raman lidar measurements were performed at the CNR-IMAA Atmospheric Observatory (CIAO), whenever weather conditions permitted observations. A methodology both for volcanic layer identification and accurate aerosol typing has been developed. This methodology relies on the multi-wavelength Raman lidar measurements and the support of long-term lidar measurements performed at CIAO since 2000. The aerosol mask for lidar measurements performed at CIAO during the 2010 Eyjafjallajökull eruption has been obtained. Volcanic aerosol layers were observed in different periods: 19–22 April, 27–29 April, 8–9 May, 13–14 May and 18–19 May. A maximum aerosol optical depth of about 0.12–0.13 was observed on 20 April, 22:00 UTC and 13 May, 20:30 UTC. Volcanic particles were detected at low altitudes, in the free troposphere and in the upper troposphere. Occurrences of volcanic particles within the PBL were detected on 21–22 April and 13 May. A Saharan dust event was observed on 13–14 May: dust and volcanic particles were simultaneously detected at CIAO at separated different altitudes as well as mixed within the same layer. Lidar ratios at 355 and 532 nm, the Ångström exponent at 355/532 nm, the backscatter-related Ångström exponent at 532/1064 nm and the particle linear depolarization ratio at 532 nm measured inside the detected volcanic layers are discussed. The dependence of these quantities on relative humidity has been investigated by using co-located microwave profiler measurements. The measured values of these intensive parameters indicate the presence of volcanic sulfates/continental mixed aerosol in the volcanic aerosol layers observed at CIAO. In correspondence of the maxima observed in the volcanic aerosol load on 19–20 April and 13 May, different values of intensive parameters were observed. Apart from the occurrence of sulfate aerosol, these values indicate also the presence of some ash which is affected by the aging during transport over Europe.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-17
    Description: Vertical profiles of the optical (extinction and backscatter coefficients, lidar ratio and Ångström exponent), microphysical (mean effective radius, mean refractive index, mean number concentration) and geometrical properties as well as the mass concentration of volcanic particles from the Eyjafjallajökull eruption were retrieved at selected heights over Athens, Greece, using multi-wavelength Raman lidar measurements performed during the period 21–24 April 2010. Aerosol Robotic Network (AERONET) particulate columnar measurements along with inversion schemes were initialized together with lidar observations to deliver the aforementioned products. The well-known FLEXPART (FLEXible PARTicle dispersion model) model used for volcanic dispersion simulations is initiated as well in order to estimate the horizontal and vertical distribution of volcanic particles. Compared with the lidar measurements within the planetary boundary layer over Athens, FLEXPART proved to be a useful tool for determining the state of mixing of ash with other, locally emitted aerosol types. The major findings presented in our work concern the identification of volcanic particles layers in the form of filaments after 7-day transport from the volcanic source (approximately 4000 km away from our site) from the surface and up to 10 km according to the lidar measurements. Mean hourly averaged lidar signals indicated that the layer thickness of volcanic particles ranged between 1.5 and 2.2 km. The corresponding aerosol optical depth was found to vary from 0.01 to 0.18 at 355 nm and from 0.02 up to 0.17 at 532 nm. Furthermore, the corresponding lidar ratios (S) ranged between 60 and 80 sr at 355 nm and 44 and 88 sr at 532 nm. The mean effective radius of the volcanic particles estimated by applying inversion scheme to the lidar data found to vary within the range 0.13–0.38 μm and the refractive index ranged from 1.39+0.009i to 1.48+0.006i. This high variability is most probably attributed to the mixing of aged volcanic particles with other aerosol types of local origin. Finally, the LIRIC (LIdar/Radiometer Inversion Code) lidar/sunphotometric combined inversion algorithm has been applied in order to retrieve particle concentrations. These have been compared with FLEXPART simulations of the vertical distribution of ash showing good agreement concerning not only the geometrical properties of the volcanic particles layers but also the particles mass concentration.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-08-26
    Description: In this paper, we report the first systematic comparison of 12-year modeled dust extinction profiles vs. Raman lidar measurements. We use the BSC-DREAM8b model, one of the most widely used dust regional models in the Mediterranean, and Potenza EARLINET lidar profiles for Saharan dust cases, the largest one-site database of dust extinction profiles. A total of 310 dust cases were compared for the May 2000–July 2012 period. The model reconstructs the measured layers well: profiles are correlated within 5% of significance for 60% of the cases and the dust layer center of mass as measured by lidar and modeled by BSC-DREAM8b differ on average 0.3 ± 1.0 km. Events with a dust optical depth lower than 0.1 account for 70% of uncorrelated profiles. Although there is good agreement in terms of profile shape and the order of magnitude of extinction values, the model overestimates the occurrence of dust layer top above 10 km. Comparison with extinction profiles measured by the Raman lidar shows that BSC-DREAM8b typically underestimates the dust extinction coefficient, in particular below 3 km. Lowest model–observation differences (below 17%) correspond to a lidar ratio at 532 nm and Ångström exponent at 355/532 nm of 60 ± 13 and 0.1 ± 0.6 sr, respectively. These are in agreement with values typically observed and modeled for pure desert dust. However, the highest differences (higher than 85%) are typically related to greater Ångström values (0.5 ± 0.6), denoting smaller particles. All these aspects indicate that the level of agreement decreases with an increase in mixing/modification processes.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...