ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-03
    Description: We studied fault scarps along the northern sector of the Celano–L’Aquila fault system in the Abruzzi region (central Apennines). Up to ∼9.5 km long, 3 m high, fault scarp traces mark the slope foot of ridgetop valleys at Mt Ocre range. In order to provide direct evidence of the deformation history of these scarps, we initiated geomorphic, ground-penetrating radar (GPR)and trenching investigations. GPR investigations yielded subsurface stratigraphic features of the scarp zones, and determined the locations for trenching sites. A total of five trenches were excavated at two different sites. Structural and stratigraphic analysis of the trench exposures combined with historical considerations, showed three faulting events between 5620 BC and 1300 AD; the most recent of them occurred after 1690 BC. Each of these events produced an estimated minimum vertical displacement ranging between 0.3 and 0.5 m. Our interpretation is that the Mt Ocre fault branch represents the northernmost surface expression of a single 35 km long seismogenic structure associated with M ∼7 earthquakes. Any attempt to estimate the seismic hazard in the area must consider the presence of this important source.
    Description: Published
    Description: 805–818
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: active tectonics ; central Italy ; earthquakes ; electromagnetic surveys ; palaeoseismology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-05
    Description: The Pergola-Melandro basin (southern Apennines) is characterized by a below-average release of seismic energy within a wider earthquake-prone region. In fact, it is placed between the maximum intensity areas of two of the most destructive earthquakes reported in the Italian seismic catalogue: theM≥7.0 Agri Valley earthquake in 1857 and the Ms = 6.9 Irpinia earthquake in 1980. In thiswork, we present geomorphologic analysis, electrical resistivity surveys and field data, including paleoseismologic evidence, that provided the first direct constraints on the presence of a∼20 kmlong, seismogenic fault at the western border of the Pergola-Melandro basin. We also obtained geological information on the recent deformation history of the Pergola-Melandro fault that indicates the occurrence of at least four surface faulting earthquakes since Late Pleistocene age. The empirical relationships linking fault length and magnitude would assign to the Pergola-Melandro fault an event of M≥6.5. These new data have important implication on the seismic hazard assessment of this sector of the Apennines, that also includes large cities such as Potenza, about 20 km far from the recognized Pergola-Melandro fault, and highlight the relevance of the geological approach in areas where the seismological records are poor. Finally, we discuss the Pergola-Melandro fault within the regional seismotectonic context. In particular, this fault belongs to the system of normal faults with an apenninic orientation, both NE and SW dipping, accommodating the NE-crustal extension taking place in the area. Nearby faults, similarly oriented but with opposite dip, may coexist whether linked by secondary faults that act as slip transfer structures. This complex system of active faults would be more realistic than a narrow band of faults running along the belt axis with an homogenous geometry, and moreover, it is more consistent with the high extension rate measured by historical earthquakes and geodetic data.
    Description: funded by the National Group for Protection against Earthquakes
    Description: Published
    Description: 19–32
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Southern Apennines ; Seismogenic fault ; Surface faulting ; Seismic hazard ; Italy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...