ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Osney Mead, Oxford OX2 0EL, UK : Blackwell Scientific Publications
    Molecular microbiology 17 (1995), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Bacterial plasmids are stabilized by a number of different mechanisms. Here we describe the molecular aspects of a group of plasmid-encoded gene systems called the proteic killer gene systems. These systems mediate plasmid maintenance by selectively killing plasmid-free cells (post-segregational killing or plasmid addiction). The group includes ccd of F, parD/pem of R1/R100, parDE of RP4/RK2, and phd/doc of P1. All of these systems encode a stable toxin and an unstable antidote. The antidotes prevent the lethal action of their cognate toxins by forming tight complexes with them. The antidotes are degraded by cellular proteases. Thus, the different decay rates of the toxins and antidotes seem to be the molecular basis of toxin activation in plasmid-free cells. The operons encoding the toxins and antidotes are autoregulated at the level of transcription either by a complex formed by the toxins and the cognate antidotes or by the antidote alone. The cellular targets of the killer proteins have been determined to be DNA gyrase in the case of ccd of F and DnaB in the case of parD of R1. Surprisingly, the Escherichia coli chromosome encodes at least two of these peculiar gene systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Osney Mead, Oxford OX2 0EL, UK : Blackwell Scientific Publications
    Molecular microbiology 17 (1995), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: A number of plasmid-encoded gene systems are thought to stabilize plasmids by killing plasmid-free cells (also termed post-segregational killing or plasmid addiction). Here we analyse the mechanisms of plasmid stabilization by ccd of F, parDE of RP4 and parD of R1, and compare them to hok/sok of R1. To induce synchronous plasmid loss we constructed a novel plasmid replication-arrest system, which possesses the advantage that plasmid replication can be completely arrested by the addition of IPTG, a non-metabolizable inducer. Using isogenic plasmid constructions we have found, for the first time, consistent correlation between the effect on steady-state loss rates and the effect on cell proliferation in the plasmid replication-arrest assay for all three systems. The parDE system had the most pronounced effect both on plasmid stabilization and on plasmid retention after replication arrest. In contrast, ccd and parD both exhibited weaker effects than anticipated from previously published results. Thus, our results indicate that the function and efficiencies of some of the systems should be reconsidered. Our results are consistent with the previously postulated hypothesis that ccd and parDE act by killing plasmid-free segregants, whereas parD seems to act by inhibiting cell division of plasmid-free segregants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...