ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Science Ltd  (2)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 27 (2004), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Dwarf mistletoe (Arceuthobium spp.) is a hemiparasite that is said to be the single-most destructive pathogen of commercially valuable coniferous trees in many regions of the world. Although its destructive nature is well documented in many respects, its effects on the physiology of its host are poorly understood. In the present study, water and carbon relations were characterized over a range of scale from leaf to whole tree in large (40- to 50-m-tall) individuals of western hemlock (Tsuga heterophylla (Raf.) Sarg.) that were either heavily infected, or uninfected with hemlock dwarf mistletoe (Arceuthobium tsugense). Specific hydraulic conductivity (ks) of infected branches was approximately half that of uninfected branches, yet leaf-specific conductivity (kL) was similar because leaf area : sapwood area ratios (AL : AS) of infected branches were lower. Pre-dawn and minimum leaf water potential and stomatal conductance (gs) were similar among infected and uninfected trees because adjustments in hydraulic architecture of infected trees maintained kL despite reduced ks. Maximum whole-tree water use was substantially lower in infected trees (approximately 55 kg d−1) than in uninfected trees (approximately 90 kg d−1) because reduced numbers of live branches in infected trees reduced whole-tree AL : AS in a manner consistent with that observed in infected branches. Maximum photosynthetic rates of heavily infected trees were approximately half those of uninfected trees. Correspondingly, leaf nitrogen content was 35% lower in infected trees. Foliar δ13C values were 2.8‰ more negative in infected than in uninfected individuals, consistent with the absence of stomatal adjustment to diminished photosynthetic capacity. Adjustments in hydraulic architecture of infected trees thus contributed to homeostasis of water transport efficiency and transpiration on a leaf area basis, whereas both carbon accumulation and photosynthetic water use efficiency were sharply reduced at both the leaf and whole-tree scale.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 27 (2004), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The gravitational component of water potential contributes a standing 0.01 MPa m−1 to the xylem tension gradient in plants. In tall trees, this contribution can significantly reduce the water potential near the tree tops. The turgor of cells in buds and leaves is expected to decrease in direct proportion with leaf water potential along a height gradient unless osmotic adjustment occurs. The pressure–volume technique was used to characterize height-dependent variation in leaf tissue water relations and shoot growth characteristics in young and old Douglas-fir trees to determine the extent to which growth limitation with increasing height may be linked to the influence of the gravitational water potential gradient on leaf turgor. Values of leaf water potential (Ψl), bulk osmotic potential at full and zero turgor, and other key tissue water relations characteristics were estimated on foliage obtained at 13.5 m near the tops of young (approximately 25-year-old) trees and at 34.7, 44.2 and 55.6 m in the crowns of old-growth (approximately 450-year-old) trees during portions of three consecutive growing seasons. The sampling periods coincided with bud swelling, expansion and maturation of new foliage. Vertical gradients of Ψl and pressure–volume analyses indicated that turgor decreased with increasing height, particularly during the late spring when vegetative buds began to swell. Vertical trends in branch elongation, leaf dimensions and leaf mass per area were consistent with increasing turgor limitation on shoot growth with increasing height. During the late spring (May), no osmotic adjustment to compensate for the gravitational gradient of Ψl was observed. By July, osmotic adjustment had occurred, but it was not sufficient to fully compensate for the vertical gradient of Ψl. In tall trees, the gravitational component of Ψl is superimposed on phenologically driven changes in leaf water relations characteristics, imposing potential constraints on turgor that may be indistinguishable from those associated with soil water deficits.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...