ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. Natural variation in environmental parameters, as well as practical constraints in study design and sampling methodology, often pose difficulties in treating impact assessments in river catchments as controlled field experiments. It is frequently impossible to develop robust relationships between reference and test stations prior to the onset of an impact and the range of statistical tools which can be adopted in data analysis to detect a change or disturbance is limited.2. In an attempt to overcome these problems we introduce a novel disturbance index to assess the impact of landuse activities on river systems. The index identifies differences in hydrochemical parameters and macroinvertebrate community metrics between reference and test stations (at a set level of significance). This approach allows for objective assessment of the occurrence and direction of change as well as the duration of an impact. The disturbance index can be applied at different scales – for a single stream, a catchment or a region.3. In this paper we describe the derivation of the index and illustrate its utility through worked examples. We use the index to assess impact of clearfelling on hydrochemical parameters such as hydrogen ion concentration, total hardness, suspended solids, conductivity and nitrate concentration as well as on macroinvertebrate parameters including abundance, richness, reciprocal of Simpson's diversity index, evenness, Ephemeroptera/Plecoptera/Trichoptera (EPT) richness and percentage of EPT taxa.4. The sensitivity of the disturbance index changes with scale of application however, and the clearfelling (CF) index has proven sensitive to the detection of even quite small changes, although in these cases ecological significance should be considered. We show that the CF index, particularly when derived from a regional scale, is a conservative index but is very robust to variation in the number of samples used in its derivation. The application of the index corresponded very well with the application of more standard statistical approaches. We believe that the index can thus be applied to other impact studies with similar project design.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 〈list style="custom"〉1The seasonal dynamics of the benthic macroinvertebrate assemblage, and the subset of this assemblage colonising naturally formed detritus accumulations, was investigated in two streams in south-west Ireland, one draining a conifer plantation (Streamhill West) and the other with deciduous riparian vegetation (Glenfinish). The streams differed in the quantity, quality and diversity of allochthonous detritus and in hydrochemistry, the conifer stream being more acid at high discharge. We expected the macroinvertebrate assemblage colonising detritus to differ in the two streams, due to differences in the diversity and quantity of detrital inputs.2Benthic density and taxon richness did not differ between the two streams, but the density of shredders was greater in the conifer stream, where there was a greater mass of benthic detritus. There was a significant positive correlation between shredder density and detritus biomass in both streams over the study period.3Detritus packs in the deciduous stream were colonised by a greater number of macroinvertebrates and taxa than in the conifer stream, but packs in both streams had a similar abundance of shredders. The relative abundance of taxa colonising detritus packs was almost always significantly different to that found in the source pool of the benthos.4Correspondence analysis illustrated that there were distinct faunal differences between the two streams overall and seasonally within each stream. Differences between the streams were related to species tolerances to acid episodes in the conifer stream. Canonical correspondence analysis demonstrated a distinct seasonal pattern in the detrital composition of the packs and a corresponding seasonal pattern in the structure of the detritus pack macroinvertebrate assemblage.5Within-stream seasonal variation both in benthic and detritus pack assemblages and in detrital inputs was of similar magnitude to the between-stream variation. The conifer stream received less and poorer quality detritus than the deciduous stream, yet it retained more detritus and had more shredders in the benthos. This apparent contradiction may be explained by the influence of hydrochemistry (during spate events) on the shredder assemblage, by differences in riparian vegetation between the two streams, and possibly by the ability of some taxa to exhibit more generalist feeding habits and thus supplement their diets in the absence of high quality detritus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Ltd
    European journal of soil science 56 (2005), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Subsistence farmers in Africa depend largely on the soil organic matter to sustain crop productivity. Long-term changes in soil organic carbon and nitrogen were measured after woodland clearance for smallholder subsistence farming or for commercial farming. The contents of organic carbon and nitrogen in soil under reference woodlands were largest (53.3 t C ha−1, 4.88 t N ha−1) in a red clay soil (∼ 50% clay + silt), followed by a granitic sand (∼ 12% clay + silt; 22.8 t C ha−1, 1.47 t N ha−1) and least (19.5 t C ha−1, 0.88 t N ha−1) in a Kalahari sand (∼ 5% clay + silt). Organic carbon declined rapidly under cultivation to attain new equilibria within 10 years on all smallholdings. Greatest losses occurred in soils that initially contained most carbon and nitrogen in the order: red clay (22.4 t C ha−1 and 1.0 t N ha−1) 〉 granitic sand (13.2 t C ha−1 and 0.8 t N ha−1) 〉 Kalahari sand (10.6 t C ha−1 and 0.5 t N ha−1). On the clay soil, commercial farming with intensive use of mineral fertilizers and incorporation of maize stover led to more gradual decline: at equilibrium, contents of carbon and nitrogen were 15 t C ha−1 and 1.7 t N ha−1 greater than on smallholdings with similar soil and climate.In the Kalahari sand the δ13C of organic C remained constant after woodland clearance, and maize contributed less than 10% of the total C even after 55 years. The δ13C signature increased slightly with increasing duration of cultivation by smallholders in the granitic sands and red clay soil where maize contributed 29% and 35% of the C at equilibrium. Under more productive commercial farming, the carbon derived from maize accounted for 50% of the total after 10 years of cultivation and 67% at equilibrium. The persistence of woodland carbon in the sandy soil is attributed to chemical stabilization resulting from large concentrations of lignin and polyphenols in the tree litter, or as charcoal.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...