ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1)
  • Blackwell Science Ltd  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 54 (2003), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Some aspects of the genesis of terrae rossae are still subject to controversy while others related to the genesis of the mineral fraction have been studied very little. We have studied four terrae rossae over limestone (two Chromic-Leptic Luvisols, a Rhodi-Leptic Luvisol and a Chromi-Leptic Cambisol) in Sierra Gádor (Almería, southern Spain), in particular the various formation processes by (i) examination of their morphological, analytical and mineralogical characteristics (including crystallochemical parameters of the mica), (ii) examination of the insoluble residue of the gravel and rock, (iii) scanning electron microscopy (SEM) of sand and silt grains, and (iv) examination of the geochemistry of the soil solution. We have investigated the autochthonous or allochthonous nature of the soil material (fine earth and gravel) in relation to the rocky substrate, concluding that both origins are possible. Our SEM study of the morphology of the quartz grains shows that some are insoluble residue and some are probably wind blown from desert and coastal sources. The micas in the fine earth fractions are inherited from the insoluble residue. Comparison of the crystallochemical parameters of micas in the insoluble residue and the soil clay shows that the clay has more SiIV and (Fe, Mg)VI, and less AlIV, AlVI and x (layer charge) than the insoluble residue. It also has fewer polytypes 2M1 and more 1M and has a smaller crystal size, especially in B horizons. The kaolinite is of varied origins including neoformation and inheritance from underlying rock. Some of the kaolinite and some mica has been blown in from elsewhere, probably from desert and coastal sources. The soils have undergone other typical processes of terrae rossae including dissolution of carbonate, illuviation of clay and iron oxides, and rubifaction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...