ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Journal of fish diseases 25 (2002), S. 0 
    ISSN: 1365-2761
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    PO Box 1354, 9600 Garsington Road, Oxford OX4 2XG, UK. : Blackwell Science Ltd
    Fatigue & fracture of engineering materials & structures 27 (2004), S. 0 
    ISSN: 1460-2695
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: For one kind of finite-boundary crack problems, the cracked equilateral triangular cross-section tube, an analytical and very simple method to determine the stress intensity factors has been proposed based on a new concept of crack surface widening energy release rate and the principle of virtual work. Different from the classical crack extension energy release rate, the crack surface widening energy release rate can be defined by the G*-integral theory and expressed by stress intensity factors. This energy release rate can also be defined easily by the elementary strength theory for slender structures and expressed by axial strains and loads. These two forms of crack surface widening energy release rate constitute the basis of a new analysis method for cracked tubes. From present discussions, a series of stress intensity factors are derived for cracked equilateral triangular cross-section tubes. Actually, the present method can also be applied to cracked polygonal tubes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-04
    Description: Scaling relationships among twig size, leaf size and leafing intensity fundamentally influence the twig–leaf deployment pattern, a property that affects the architecture and functioning of plants. However, our understanding of how these relationships change within a species or between species as a function of forest succession is unclear. We determined log–log scaling relationships between twig cross-sectional area (twig size) and each of total and individual leaf area, and leafing intensity (the number of leaves per twig volume) for 78 woody species along a successional series in subtropical evergreen forests in eastern China. The series included four stages: secondary shrub (S1), young (S2), sub-climax (S3) and climax evergreen broadleaved forests (S4). The scaling slopes in each of the three relationships did not differ among the four stages. The y -intercept did not shift among the successional stages in the relationship between twig cross-sectional area and total leaf area; however, the y -intercept was greatest in S4, intermediate in S3 and lowest in S2 and S1 for the relationship between twig size and individual leaf area, while the opposite pattern was found for the twig size-leafing intensity relationship. This indicates that late successional trees have few but large leaves while early successional trees have more small leaves per unit twig size. For the relationship between twig cross-sectional area and total leaf area, there was no difference in the regression slope between recurrent (appear in more than one stages) and non-recurrent species (appear in only one stage) for each of the S1–S2, S2–S3 and S3–S4 pairs. A significant difference in the y -intercept was found in the S2–S3 pair only. In the relationship between twig cross-sectional area and individual leaf area, the regression slope between recurrent and non-recurrent species was homogeneous in the S1–S2 and S3–S4 pairs, but heterogeneous in the S2–S3 pair. We conclude that forest succession caused the shift in the intercept, but did not affect scaling slopes for relationships among twig size, leaf size and leaf intensity. For recurrent species, the invariant scaling slope in the twig–leaf size relationship between adjacent pairs of successional stages may be related to their phenotypic plasticity by adjusting their twig and leaf deployment strategy to similar to what the non-recurrent species display.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-06-01
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...