ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Temperate forest ecosystems have recently been identified as an important net sink in the global carbon budget. The factors responsible for the strength of the sinks and their permanence, however, are less evident. In this paper, we quantify the present carbon sequestration in Thuringian managed coniferous forests. We quantify the effects of indirect human-induced environmental changes (increasing temperature, increasing atmospheric CO2 concentration and nitrogen fertilization), during the last century using BIOME-BGC, as well as the legacy effect of the current age-class distribution (forest inventories and BIOME-BGC). We focused on coniferous forests because these forests represent a large area of central European forests and detailed forest inventories were available.The model indicates that environmental changes induced an increase in biomass C accumulation for all age classes during the last 20 years (1982–2001). Young and old stands had the highest changes in the biomass C accumulation during this period. During the last century mature stands (older than 80 years) turned from being almost carbon neutral to carbon sinks. In high elevations nitrogen deposition explained most of the increase of net ecosystem production (NEP) of forests. CO2 fertilization was the main factor increasing NEP of forests in the middle and low elevations.According to the model, at present, total biomass C accumulation in coniferous forests of Thuringia was estimated at 1.51 t C ha−1 yr−1 with an averaged annual NEP of 1.42 t C ha−1 yr−1 and total net biome production of 1.03 t C ha−1 yr−1 (accounting for harvest). The annual averaged biomass carbon balance (BCB: biomass accumulation rate-harvest) was 1.12 t C ha−1 yr−1 (not including soil respiration), and was close to BCB from forest inventories (1.15 t C ha−1 yr−1). Indirect human impact resulted in 33% increase in modeled biomass carbon accumulation in coniferous forests in Thuringia during the last century. From the forest inventory data we estimated the legacy effect of the age-class distribution to account for 17% of the inventory-based sink. Isolating the environmental change effects showed that these effects can be large in a long-term, managed conifer forest.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Tree transpiration was measured in 28, 67, 204 and 383-y-old uniform stands and in a multicohort stand (140–430 y) of Pinus sylvestris ssp. sibirica Lebed. in Central Siberia during August 1995. In addition transpiration of three codominant trees was monitored for two years in a 130-y-old stand. All stands established after fire. Leaf area index (LAI) ranged between 0.6 (28-y-old stand) and 1.6 for stands older than 67-y. Stand xylem area at 1.3 m height increased from 4 cm2 m−2 (28-y) to 11.5 cm2 m−2 (67-y) and decreased again to 7 cm2 m−2 in old stands. Above-ground living biomass increased from 1.5 kg dry weight m−2 (28-y) to 14 kg dry weight m−2 (383-y). Day-to-day variation of tree transpiration in summer was dependent on net radiation, vapour pressure deficit, and soil water stress. Tree-to-tree variation of xylem flux was small and increased with heterogeneity in canopy structure. Maximum rates of xylem flux density followed the course of net radiation from mid April when a constant level of maximum rates was reached until mid September when low temperatures and light strongly reduced flux density. Maximum sap flux density (60 g m−2 s−1) and canopy transpiration (1.5 mm d−1) were reached in the 67-y stand. Average canopy transpiration of all age classes was 0.72 ± 0.3 mm d−1. Canopy transpiration (E) was not correlated with LAI but related to stand sapwood area SA (E = − 0.02 + 1.15SA R2) which was determined by stand density and tree sapwood area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-11
    Description: Old-growth forests are subject to substantial changes in structure and species composition due to the intensification of human activities, gradual climate change and extreme weather events. Trees store ca. 90 % of the total aboveground biomass (AGB) in tropical forests and precise tree biomass estimation models are crucial for management and conservation. In the central Amazon, predicting AGB at large spatial scales is a challenging task due to the heterogeneity of successional stages, high tree species diversity and inherent variations in tree allometry and architecture. We parameterized generic AGB estimation models applicable across species and a wide range of structural and compositional variation related to species sorting into height layers as well as frequent natural disturbances. We used 727 trees (diameter at breast height  ≥  5 cm) from 101 genera and at least 135 species harvested in a contiguous forest near Manaus, Brazil. Sampling from this data set we assembled six scenarios designed to span existing gradients in floristic composition and size distribution in order to select models that best predict AGB at the landscape level across successional gradients. We found that good individual tree model fits do not necessarily translate into reliable predictions of AGB at the landscape level. When predicting AGB (dry mass) over scenarios using our different models and an available pantropical model, we observed systematic biases ranging from −31 % (pantropical) to +39 %, with root-mean-square error (RMSE) values of up to 130 Mg ha−1 (pantropical). Our first and second best models had both low mean biases (0.8 and 3.9 %, respectively) and RMSE (9.4 and 18.6 Mg ha−1) when applied over scenarios. Predicting biomass correctly at the landscape level in hyperdiverse and structurally complex tropical forests, especially allowing good performance at the margins of data availability for model construction/calibration, requires the inclusion of predictors that express inherent variations in species architecture. The model of interest should comprise the floristic composition and size-distribution variability of the target forest, implying that even generic global or pantropical biomass estimation models can lead to strong biases. Reliable biomass assessments for the Amazon basin (i.e., secondary forests) still depend on the collection of allometric data at the local/regional scale and forest inventories including species-specific attributes, which are often unavailable or estimated imprecisely in most regions.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...