ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We tested the hypothesis that the stable carbon isotope signature of ecosystem respiration (δ13CR) was regulated by canopy conductance (Gc) using weekly Keeling plots (n=51) from a semiarid old-growth ponderosa pine (Pinus ponderosa) forest in Oregon, USA. For a comparison of forests in two contrasting climates we also evaluated trends in δ13CR from a wet 20-year-old Douglas-fir (Pseudotsuga menziesii) plantation located near the Pacific Ocean. Intraannual variability in δ13CR was greater than 8.0‰ at both sites, was highest during autumn, winter, and spring when rainfall was abundant, and lowest during summer drought. The δ13CR of the dry pine forest was consistently more positive than the wetter Douglas-fir forest (mean annual δ13CR: −25.41‰ vs. −26.23‰, respectively, P=0.07). At the Douglas-fir forest, δ13CR–climate relationships were consistent with predictions based on stomatal regulation of carbon isotope discrimination (Δ). Soil water content (SWC) and vapor pressure deficit (vpd) were the most important factors governing δ13CR in this forest throughout the year. In contrast, δ13CR at the pine forest was relatively insensitive to SWC or vpd, and exhibited a smaller drought-related enrichment (∼2‰) than the enrichment observed during drought at the Douglas-fir forest (∼5‰). Groundwater access at the pine forest may buffer canopy–gas exchange from drought. Despite this potential buffering, δ13CR at the pine forest was significantly but weakly related to canopy conductance (Gc), suggesting that δ13CR remains coupled to canopy–gas exchange despite groundwater access. During drought, δ13CR was strongly correlated with soil temperature at both forests. The hypothesis that canopy-level physiology is a critical regulator of δ13CR was supported; however, belowground respiration may become more important during rain-free periods.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The δ13C values of atmospheric carbon dioxide (CO2) can be used to partition global patterns of CO2 source/sink relationships among terrestrial and oceanic ecosystems using the inversion technique. This approach is very sensitive to estimates of photosynthetic 13C discrimination by terrestrial vegetation (ΔA), and depends on δ13C values of respired CO2 fluxes (δ13CR). Here we show that by combining two independent data streams – the stable isotope ratios of atmospheric CO2 and eddy-covariance CO2 flux measurements – canopy scale estimates of ΔA can be successfully derived in terrestrial ecosystems. We also present the first weekly dataset of seasonal variations in δ13CR from dominant forest ecosystems in the United States between 2001 and 2003. Our observations indicate considerable summer-time variation in the weekly value of δ13CR within coniferous forests (4.0‰ and 5.4‰ at Wind River Canopy Crane Research Facility and Howland Forest, respectively, between May and September). The monthly mean values of δ13CR showed a smaller range (2–3‰), which appeared to significantly correlate with soil water availability. Values of δ13CR were less variable during the growing season at the deciduous forest (Harvard Forest). We suggest that the negative correlation between δ13CR and soil moisture content observed in the two coniferous forests should represent a general ecosystem response to the changes in the distribution of water resources because of climate change. Shifts in δ13CR and ΔA could be of sufficient magnitude globally to impact partitioning calculations of CO2 sinks between oceanic and terrestrial compartments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-05-14
    Description: The carbon isotope of a leaf (δ13Cleaf) is generally more negative in riparian zones than in areas with low soil moisture content or rainfall input. In Central Amazonia, the small-scale topography is composed of plateaus and valleys, with plateaus generally having a lower soil moisture status than the valley edges in the dry season. Yet in the dry season, the nocturnal accumulation of CO2 is higher in the valleys than on the plateaus. Samples of sunlit leaves and atmospheric air were collected along a topographical gradient in the dry season to test whether the δ13Cleaf of sunlit leaves and the carbon isotope ratio of ecosystem respired CO2 (δ13CReco) may be more negative in the valley than those on the plateau. The δ13Cleaf was significantly more negative in the valley than on the plateau. Factors considered to be driving the observed variability in δ13Cleaf were: leaf nitrogen concentration, leaf mass per unit area (LMA), soil moisture availability, more negative carbon isotope ratio of atmospheric CO2 (δ13Ca) in the valleys during daytime hours, and leaf discrimination (Δleaf). The observed pattern of δ13Cleaf might suggest that water-use efficiency (WUE) is higher on the plateaus than in the valleys. However, there was no full supporting evidence for this because it remains unclear how much of the difference in δ13Cleaf was driven by physiology or &delta13Ca. The δ13CReco was more negative in the valleys than on the plateaus on some nights, whereas in others it was not. It is likely that lateral drainage of CO2 enriched in 13C from upslope areas might have happened when the nights were less stable. Biotic factors such as soil CO2 efflux (Rsoil) and the responses of plants to environmental variables such as vapor pressure deficit (D) may also play a role. The preferential pooling of CO2 in the low-lying areas of this landscape may confound the interpretation of δ13Cleaf and δ13CReco.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-11-29
    Description: The carbon isotope of a leaf (δ13Cleaf) is generally more negative in riparian zones than in areas with low soil moisture content or rainfall input. In Central Amazonia, the small-scale topography is composed of plateaus and valleys, with plateaus generally being drier than the valley edges in the dry season. The nocturnal accumulation of CO2 is higher in the valleys than on the plateaus in the dry season. The CO2 stored in the valleys takes longer to be released than that on the plateaus, and sometimes the atmospheric CO2 concentration (ca) does not drop to the same level as on the plateaus at any time during the day. Samples of sunlit leaves and atmospheric air were collected along a topographical gradient to test whether the δ13Cleaf of sunlit leaves and the carbon isotope ratio of ecosystem respired CO2 (δ13CR) may be more negative in the valley than those on the plateau. The δ13Cleaf was significantly more negative in the valley than on the plateau. Factors considered to be driving the observed variability in δ13Cleaf were: leaf nitrogen concentration, leaf mass per unit area (LMA), soil moisture availability, more negative carbon isotope ratio of atmospheric CO2 (δ13Ca) in the valleys during daytime hours, and leaf discrimination (Δleaf). The observed pattern of δ13Cleaf suggests that water-use efficiency (WUE) may be higher on the plateaus than in the valleys. The ;13CR was more negative in the valleys than on the plateaus on some nights, whereas in others it was not. It is likely that lateral drainage of CO2 enriched in 13C from upslope areas might have happened when the nights were less stable. Biotic factors such as soil CO2 efflux (Rsoil) and the responses of plants to environmental variables such as vapor pressure deficit (D) may also play a role.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-26
    Description: Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH4 and also identify fugitive urban CH4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-03-03
    Description: In the winter-rain southern Atacama Desert of the Coquimbo Region of Chile, El Niño - Southern Oscillation (ENSO) events modulate primary productivity. In this region, there are important changes in water availability between La Niña (dry) and El Niño (rainy) years. Using inter-annual comparisons of LANDSAT images from 30° to 31° S latitude, we observed changes in primary productivity between dry and rainy years at the regional level. There were also significant, negative correlations between productivity and elevation, with changes occurring first at low elevation during rainy years. The limiting factors to dryland vegetation primary productivity is different in regard to elevation. Rain during an El Niño year is the main factor that explains the increase in primary productivity at low elevation, while lower temperatures reduce and delay the net primary productivity at mid elevation.
    Print ISSN: 1680-7340
    Electronic ISSN: 1680-7359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-06
    Description: Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the surface 50 m has the greatest direct impacts on human health as well as ecosystem processes, hence data at this level is necessary for addressing carbon cycle and public health related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We identify fugitive urban CH4 emissions and assess the magnitude of CH4 emissions from known point sources. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...