ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The bacterial septum appears to comprise a macromolecular assembly of essential cell division proteins (the ‘septasome’) that are responsible for physically dividing the cell during cytokinesis. FtsL and DivIC are essential components of this division machinery in Bacillus subtilis. We used yeast two-hybrid analysis as well as a variety of biochemical and biophysical methods to examine the proposed interaction between Bacillus subtilis FtsL and DivIC. We show that FtsL and DivIC are thermodynamically unstable proteins that are likely to be unfolded and therefore targeted for degradation unless stabilized by interactions with other components of the septasome. However, we show that this stabilization does not result from a direct interaction between FtsL and DivIC. We propose that the observed interdepend-ence of DivIC and FtsL stability is a result of indirect interactions that are mediated by other septasomal proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Correct placement of the division septum in Escherichia coli requires the co-ordinated action of three proteins, MinC, MinD and MinE. MinC and MinD interact to form a non-specific division inhibitor that blocks septation at all potential division sites. MinE is able to antagonize MinCD in a topologically sensitive manner, as it restricts MinCD activity to the unwanted division sites at the cell poles. Here, we show that the topological specificity function of MinE residues in a structurally autonomous, trypsin-resistant domain comprising residues 31–88. Nuclear magnetic resonance (NMR) and circular dichroic spectroscopy indicate that this domain includes both α and β secondary structure, while analytical ultracentrifugation reveals that it also contains a region responsible for MinE homodimerization. While trypsin digestion indicates that the anti-MinCD domain of MinE (residues 1–22) does not form a tightly folded structural domain, NMR analysis of a peptide corresponding to MinE1–22 indicates that this region forms a nascent helix in which the peptide rapidly interconverts between disordered (random coil) and α-helical conformations. This suggests that the N-terminal region of MinE may be poised to adopt an α-helical conformation when it interacts with the target of its anti-MinCD activity, presumably MinD.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...