ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 166 (1998), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Pseudomonas fluorescens strain CA-4 is a bioreactor isolate previously characterised by the presence of a side chain oxidation pathway for ethylbenzene breakdown. In this report a second pathway involving ethylbenzene ring dioxygenation has been identified in this strain. We examine here second substrate inhibition of the genes encoding the initial enzymes of this pathway, using reverse transcription (RT)-PCR. The genes of the ring-dioxygenation have been cloned and sequenced. They exhibit near identity to the gene clusters encoding the aromatic ring dioxygenase enzymes of two previously described isopropyl degrading strains, Pseudomonas sp. strain JR1 and P. fluorescens IP01. This dioxygenase pathway appears to be the major pathway for ethylbenzene degradation in this strain. The expression of these genes appears to be affected by the presence of second carbon substrates. Using RT-PCR we demonstrate that the negative effect of glutamate present in the growth medium together with ethylbenzene on the rate of ethylbenzene metabolism is mediated at the transcriptional level on the ethylbenzene dioxygenase genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology reviews 26 (2002), S. 0 
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The last few decades have seen a steady increase in the global production and utilisation of the alkenylbenzene, styrene. The compound is of major importance in the petrochemical and polymer-processing industries, which can contribute to the pollution of natural resources via the release of styrene-contaminated effluents and off-gases. This is a cause for some concern as human over-exposure to styrene, and/or its early catabolic intermediates, can have a range of destructive health effects. These features have prompted researchers to investigate routes of styrene degradation in microorganisms, given the potential application of these organisms in bioremediation/biodegradation strategies. This review aims to examine the recent advances which have been made in elucidating the underlying biochemistry, genetics and physiology of microbial styrene catabolism, identifying areas of interest for the future and highlighting the potential industrial importance of individual catabolic pathway enzymes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The effects of various nutrient-limiting conditions on expression of the sty operon in Pseudomonas putida CA-3 were investigated. It was observed that limiting concentrations of the carbon source phenylacetic acid, resulted in high levels of phenylacetyl coenzyme A (CoA) ligase activity, this was accompanied also by upper pathway styrene monooxygenase enzyme activity. The introduction of inorganic nutrient limitations, (nitrate, sulfate and phosphate), caused a dramatic reduction in detectable levels of phenylacetyl CoA ligase activity, particularly in the presence of the primary carbon source, succinate. Under these conditions it was no longer possible to detect styrene monooxygenase activity. Reverse transcription PCR analysis of total RNA, isolated under each of the continuous culture conditions examined, revealed that variations in the levels of enzyme activity coincided with altered patterns of corresponding paaK (phenylacetyl CoA ligase) and styA (styrene monooxygenase) gene expression. Transcription of the upper pathway regulatory sensor kinase gene styS was also observed to be growth condition-dependent. These observations suggest that induction/repression of the sty operon in P. putida CA-3, during growth on phenylacetic acid under continuous culture conditions, involves regulatory mechanisms coordinately affecting both the upper and lower pathways and acting at the level of gene transcription.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 175 (1999), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Mycotoxins are secondary metabolites produced by many important phytopathogenic and food spoilage fungi including Aspergillus, Fusarium and Penicillium species. The toxicity of four of the most agriculturally important mycotoxins (the trichothecenes, and the polyketide-derived mycotoxins; aflatoxins, fumonisins and sterigmatocystin) are discussed and their chemical structure described. The steps involved in the biosynthesis of aflatoxin and sterigmatocystin and the experimental techniques used in the cloning and molecular characterisation of the genes involved in the pathway are described in detail. The biosynthetic genes involved in the fumonisin and trichothecene biosynthetic pathways are also outlined. The potential benefits gained from an increased knowledge of the molecular organisation of these pathways together with the mechanisms involved in their regulation are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 124 (1994), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Pseudomonas fluorescens strain CA-4 is a bioreactor isolate capable of ethylbenzene degradation. Transposon mutagenesis and enzyme assays have been performed which allow us to propose the ethylbenzene degradative pathway in operation in this strain. Ethylbenzene is initially converted to 2-phenylethanol. This is degraded to phenylacetaldehyde and then to phenylacetic acid. The major inducer of the pathway is ethylbenzene itself. The pathway is regulated by the presence of non-aromatic carbon sources. Oxidation of ethylbenzene is repressed by glutamate, but not by citrate or glucose. A clone from a chromosomal library has been found to complement a mutant deficient in the ability to convert ethylbenzene to 2-phenylethanol.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...