ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 
 A, leaf net CO2 assimilation
a, fractionation against 13C for CO2 diffusion through air
b, net fractionation against 13C during CO2 fixation by Rubisco and PEPc
δ13C, carbon isotopic composition
Δ, discrimination against 13C during CO2 assimilation
d, the term including the fractionation due to CO2 dissolution, liquid phase diffusion and also discrimination during both respiration and photorespiration DW, leaf dry weight
 dδ13C, the difference between CO2 respired in the dark and plant material in their carbon isotope composition
 dΔ, variation in modelled discrimination at a given pi/pa relative to a reference value at pi/pa = 0·7
 FW, leaf fresh weight
gc, leaf conductance to CO2 diffusion
 HPLC, high-performance liquid chromatography
 LMA, leaf mass per area
pa, ambient partial pressure of CO2
pi, intercellular partial pressure of CO2
 PEPc, phosphoenolpyruvate carboxylase
 PPFD, photosynthetic photon flux density
RPDB, 13C/12C ratio of standard PDB
RS, 13C/12C ratio of sample
 Rubisco, ribulose 1,5 bisphosphate carboxylase-oxygenase
 RWC, leaf relative water content
 SW, leaf saturated weight
 VPD, vapour pressure deficit

 The variations in δ13C in both leaf carbohydrates (starch and sucrose) and CO2 respired in the dark from the cotyledonary leaves of Phaseolus vulgaris L. were investigated during a progressive drought. As expected, sucrose and starch became heavier (enriched in 13C) with decreasing stomatal conductance and decreasing pi/pa during the first half (15 d) of the dehydration cycle. Thereafter, when stomata remained closed and leaf net photosynthesis was near zero, the tendency was reversed: the carbohydrates became lighter (depleted in 13C). This may be explained by increased pi/pa but other possible explanations are also discussed. Interestingly, the variations in δ13C of CO2 respired in the dark were correlated with those of sucrose for both well-watered and dehydrated plants. A linear relationship was obtained between δ13C of CO2 respired in the dark and sucrose, respired CO2 always being enriched in 13C compared with sucrose by ≈ 6‰. The whole leaf organic matter was depleted in 13C compared with leaf carbohydrates by at least 1‰. These results suggest that: (i) a discrimination by ≈ 6‰ occurs during dark respiration processes releasing 13C-enriched CO2; and that (ii) this leads to 13C depletion in the remaining leaf material.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...