ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Saccharomyces cerevisiae  (19)
  • Springer  (19)
  • Blackwell Publishing Ltd
  • Molecular Diversity Preservation International (MDPI)
Collection
Publisher
  • Springer  (19)
  • Blackwell Publishing Ltd
  • Molecular Diversity Preservation International (MDPI)
  • Wiley-Blackwell  (13)
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 11 (1986), S. 211-215 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Hyperresistance ; DNA damaging agents ; Genotoxic effects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In order to study resistance to DNA damaging agents, yeast DNA segments conferring hyperresistance in this organism to such genotoxic agents were selected for among yeast cells transformed by a yeast genome library based on the multi-copy vector plasmid YEp13. Genetic variants hyperresistant to 4-nitroquinohne-N-oxide, formaldehyde, and alkylating agents were isolated and the respective hyperresistance determinants shown to co-segregate with the vector plasmid. Phenotypical characterization indicated different degrees of resistance, few cases of cross-resistance and differing structural stability of the cloned DNA. By transfer to E. coli and subsequent retransformation of yeast a number of plasmids was shown to stably carry the genetic information for hyperresistance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Dynamin ; Mitochondria ; GTP binding protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The isolation and characterization of MGM1, and yeast gene with homology to members of the dynamin gene family, is described. The MGM1 gene is located on the right arm of chromosome XV between STE4 and PTP2. Sequence analysis revealed a single open reading frame of 902 residues capable of encoding a protein with an approximate molecular mass of 101 kDa. Loss of MGM1 resulted in slow growth on rich medium, failure to grow on non-fermentable carbon sources, and loss of mitochondrial DNA. The mitochondria also appeared abnormal when visualized with an antibody to a mitochondrial-matrix marker. MGM1 encodes a dynamin-like protein involved in the propagation of functional mitochondria in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 20 (1991), S. 167-171 
    ISSN: 1432-0983
    Keywords: Glycolysis ; Repetitive elements τ/δ ; Promoter ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In this study we report on the complete nucleotide sequence of the yeast phosphoglycerate mutase gene (GPM1) and its essential 5′ and 3′ non-coding regions. The transcriptional start points were determined by S1-mapping and sequencing of a cDNA clone. Several sequences identified as important for transcriptional regulation in yeast promoters are present upstream of the transcription start point. 3′ to the coding region we sequenced a composite repetitive element which, apparently, originated from a recombination between a delta-and a tau-element. Finally, we mapped the GPM1 gene 13 cM distal to fas1 on chomosome XI.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 9 (1985), S. 453-461 
    ISSN: 1432-0983
    Keywords: Recombination ; Repair ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The RAD50 gene in yeast is required for recombination-repair (i.e., the double strand break repair pathway) in mitosis, and for meiotic recombination and sporulation. Both of these processes are complex and seem likely to require a relatively large number of gene products. In order to help define other genes required for recombination and repair processes in yeast, we have isolated extragenic revertants of rad50-4 which restore the ability to grow in the presence of MMS. Evidence from segregation indicates the extragenic revertants fall into at least five loci. Two of them reduce sporulation and spore viability at high temperature; another mutation confers a spontaneous hyperrec phenotype on mitotic cells. Thus, at least three revertants are candidates for mutations which affect recombination functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 295-304 
    ISSN: 1432-0983
    Keywords: Meiosis ; Meiotic recombination ; Saccharomyces cerevisiae ; REC114
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Four new meiotic recombination genes were previously isolated by selecting for mutations that rescue the meiotic lethality of rad52 spo13 strains. One of these genes, REC114, is described here, and the data confirm that REC114 is a meiosis-specific recombination gene with no detectable function in mitosis. REC114 is located on chromosome XIII approximately 4,9 cM from CIN4. The nucleotide sequence reveals an open reading frame of 1262 bp, consensus intron splice sites close to the 3′ end, and indicates that the second exon codes for only seven amino acids. In the promoter region, a URS1 consensus sequence (TGGGCGGCTA), identical to the URS1 found in the promoter of SPO16, is present 93 bp upstream of the translation start site. Northern-blot hybridization demonstrates that REC114 is transcribed only during meiosis and that it is not expressed in the absence of the IME1 gene product, even when IME2 is constitutively expressed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 2 (1987), S. 159-165 
    ISSN: 1476-5535
    Keywords: Yeast ; Genetic stability ; Saccharomyces cerevisiae ; Selection ; Reproductive fitness
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The potential for changes in allele frequencies in yeast populations by selection was examined. Cells from the wine yeastSaccharomyces cerevisiae (strain Montrachet) were grown over a large number of generations using two different culturing techniques, each with two variations: serial transfers on WLN agar plates with and without UV irradiation, and continuous culture in autoclaved and in filter-sterilized grape must. A low frequency of variant isozyme patterns was found in samples taken at the end of the experiment. Growth rates in must and on agar plates were also examined, and it was found that all samples were faster-growing than the original strain, to varying degrees. Applications for the selection system developed are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 169 (1997), S. 95-106 
    ISSN: 1573-4919
    Keywords: Saccharomyces cerevisiae ; N-glycosylation ; dolichol pathway ; ALG7 ; post-transcriptional regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The yeast ALG7 gene functions by initiating the synthesis of the dolichol-linked oligosaccharide precursor and plays an important role in the control of protein N-glycosylation. The levels of ALG7 multiple transcripts are modulated by the physiological status of the cell and environmental cues, and deregulation of their abundance is deleterious to several cellular functions. Since ALG7 mRNAs are unstable, we investigated the role of these transcripts' half-lives in determining their steady-state levels. Using a temperature-sensitive RNA polymerase II mutant, we demonstrate that increased stability was the primary determinant of higher ALG7 mRNA abundance in response to glucose limitation or treatment with tunicamycin. In contrast, at the G1/G0 transition point, changes in the decay rates were inversely related to ALG7 transcript accumulation: the decreased abundance of ALG7 mRNAs following exit from the mitotic cycle was associated with lengthening of the decay rates, while their increased accumulation after growth stimulation correlated with decreased stability. This suggests that, depending on the circumstance, mRNA half-lives can either directly determine the level of ALG7 transcript accumulation or oppose regulatory changes at other control levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 124 (1993), S. 131-140 
    ISSN: 1573-4919
    Keywords: Schizosaccharomyces pombe ; Saccharomyces cerevisiae ; H+-ATPase ; intracellular pH ; carboxy-seminaphthorhodafluor-1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract We examined cytoplasmic pH regulation inSchizosaccharomyces pombe andSaccharomyces cerevisiae using pH-sensitive fluorescent dyes. Of several different fluorescent compounds tested, carboxy-seminaphthorhodafluor-1 (C.SNARF-1) was the most effective. Leakage of C.SNARF-1 fromS. pombe was much slower than leakage fromC. cerevisiae. Using the pH-dependent fluorescence of C.SNARF-1 we showed that at an external pH of 7, mean resting internal pH was 7.0 forS. pombe and 6.6 forS. cerevisiae. We found that internal pH inS. pombe was maintained over a much narrower range in response to changes in external pH, especially at acidic pH. The addition of external glucose caused an intracellular alkalinization in both species, although the effect was much greater inS. cerevisiae than inS. pombe. The plasma membrane H+-ATPase inhibitor diethylstilbestrol reduced both the rate and extent of alkalinisation, with an IC50 of approximately 35 μM in both species. Amiloride also inhibited internal alkalinisation with IC50's of 745 μM forS. cerevisiae and 490 μM forS. pombe.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Intrachromosomal recombination ; Cell cycle ; Radiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A genetic system selecting for deletion events (DEL recombination) due to intrachromosomal recombination has previously been constructed in the yeastSaccharomyces cerevisiae. Intrachromosomal recombination is inducible by chemical and physical carcinogens. We wanted to understand better the mechanism of induced DEL recombination and to attempt to determine in which phase of the cell cycle DEL recombination is inducible. Yeast cells were arrested at specific phases of the cell cycle, irradiated with UV or γ-rays, and assayed for DEL recombination and interchromosomal recombination. In addition, the contribution of intrachromatid crossing-over to the number of radiation induced DEL recombination events was directly investigated at different phases of the cell cycle. UV irradiation induced DEL recombination preferentially in S phase, while γ-rays induced DEL recombination in every phase of the cell cycle including G1. UV and γ-radiation induced intrachromatid crossing over preferentially in G1, but it accounted at the most for only 14% of the induced DEL recombination events. The possibility is discussed that single-strand annealing or one-sided invasion events, which can occur in G1 and may be induced by a double-strand break intermediate, may be responsible for a large proportion of the induced DEL recombination events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Gene expression ; Cell cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have examined the pattern of transcription exhibited by four genes in the dTTP biosynthetic pathway of Saccharomyces cerevisiae. Consistent with the results reported previously by Storms et al. (1984), the TMP1 (or CDC21) gene encoding thymidylate synthase was found to be transcribed in a periodic manner during the cell cycle with maximal mRNA levels occurring just prior to the onset of DNA replication. Three other genes in this pathway DCD1, DUT1 and DFR1 encoding dCMP deaminase, dUTP pyrophosphatase and dihydrofolate reductase, respecitively, exhibited relatively constant levels of transcription throughout the cell cycle. These results, particularly for DFR1, are in marked contrast with those obtained in other eukaryotic systems which have suggested that, in general, genes encoding enzymes involved in DNA precursor synthesis are subject to cell cycle regulation. Thus, periodic transcription is not a property common to all genes involved in DNA replication in this eukaryote.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...