ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Publishing Ltd  (1)
  • Geological Society of London  (1)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 127 (1996), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: To speed up the calculation of the field Jacobian for 2-D magnetoteliuric inversion using finite elements, the principle of electromagnetic reciprocity is applied. The governing relationship for the Jacobian of the field along strike is obtained by differentiating the Helmholtz equation with respect to the resistivity of each region in the finite-element mesh. The result is a similar Helmholtz equation for the Jacobian, with new sources distributed over all nodes within the parameter medium. However, according to the principle of electromagnetic reciprocity, the roles of sources and receivers are interchangeable. Utilizing reciprocity, the field values obtained from the original forward problem and for new unit sources imposed at the receivers are then utilized in the calculation of the Jacobian by simple multiplication and summation with finite-element terms at each rectangle in the mesh. For the auxiliary (across-strike) fields, the Jacobian terms are obtained by solving source vectors loaded with parabola coefficients used in the approximation to Maxwell's equations. Jacobian terms for the apparent resistivity (pa), the impedance phase (φ) and the vertical magnetic field (Kzy) are then calculated utilizing the parallel- and auxiliary-field Jacobians. Comparison of Jacobian values obtained from reciprocity calculations and by differencing two forward solutions show that the reciprocity method is accurate and can be used to decrease the number of calculations required to obtain sensitivities by one to two orders of magnitude.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-11
    Description: Large-scale electrical resistivity investigations of the Antarctic crust and upper mantle utilizing the magnetotelluric method (MT) are limited in number compared to temperate regions, but provide physical insights difficult to obtain with other techniques. Key to the method's success are instrumentation advances that allow micro-volt level measurements of the MT electric field in the face of mega-ohm contact resistances. Primarily in this chapter, we reanalyze existing data from three campaigns over the Antarctic interior using modern 3D non-linear inversion analysis and offer additional geophysical conclusions and context beyond the original studies. A profile of MT soundings over transitional Ellsworth-Whitmore block in central West Antarctica implies near-cratonic lithospheric geothermal conditions with interpreted graphite-sulphide horizons deformed along margins of high-grade silicate lithologic blocks. Reanalysis of South Pole soundings confirms large-scale low resistivity spanning Moho depths that is consistent with limited seismic tomography and elevated crustal thermal regime inferences. Upper mantle under a presumed adiabatic thermal gradient below the Ross Ice Shelf near the central Transantarctic Mountains appears to be of a moderately hydrated state but not sufficient so as to induce melting. The degree of hydration there is comparable to that below the north-central Great Basin province of the western U.S.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5332327
    Print ISSN: 0435-4052
    Electronic ISSN: 2041-4722
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...