ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Expanded sedimentary records from the Tethys reveal unique faunal and isotopic changes across the Palaeocene-Eocene (P-E) transition. Unlike in the open oceans, the Tethys exhibits a gradual decrease of 1.5% in δ13C values prior to the rapid δ13C excursion. Associated with the 613C excursion is a decrease in calcite burial, increase in detrital content and appearance of a unique opportunistic planktic foraminifera1 assemblage (e.g. compressed acarininids). The existence of a prelude decrease in δ13C values in the Tethys suggests that the P-E δ13C excursion may have occurred in two steps and over a few hundred thousand years, rather than as one step over a few thousand years as previously suggested. This slower excursion rate is readily explained by changing organic carbon weathering or burial rates and avoids the need of invoking ad hoc scenarios.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-20
    Description: During the late Palaeocene to the middle Eocene (57.5 to 46.5 Ma) a total of 39 hyperthermals – periods of rapid global warming recorded by prominent negative carbon isotope excursions (NCIEs) as well as peaks in iron content – have been recognized in marine cores. Understanding how the Earth system responded to rapid warming during these hyperthermals is fundamental because they represent potential analogues, in the geological record, to the ongoing anthropogenic modification of global climate. However, while hyperthermals have been well documented in the marine sedimentary record, only few have been recognized and described in continental deposits, thereby limiting our ability to understand the effect and record of global warming on terrestrial surficial systems. Hyperthermals in the continental record could be a powerful correlation tool to help connect marine and continental records, addressing issues of environmental signal propagation from land to sea. In this study, we generate new stable carbon isotope data (δ13C values) across the well-exposed and time-constrained fluvial sedimentary succession of the early Eocene Castissent Formation in the South-Central Pyrenees (Spain). The δ13C values of pedogenic carbonate reveal – similarly to the global records – stepped NCIEs, culminating in a minimum δ13C value that we correlate with the hyperthermal event U at ca. 50 Ma. This general trend towards more negative values is most probably linked to higher primary productivity leading to an overall higher respiration of soil organic matter during these climatic events. The relative enrichment in immobile elements (Zr, Ti, Al) and higher estimates of mean annual precipitation together with the occurrence of small iron-oxides/hydroxides nodules during the NCIEs suggest intensification of chemical weathering and/or longer exposure of soils in a highly seasonal climate. The results show that even relatively small-scale hyperthermals compared with their prominent counterparts, such as PETM, ETM2 and 3, have left a recognizable trace in the stratigraphic record, providing insights into the dynamics of the carbon cycle in continental environments during these events.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-04
    Description: The late Palaeocene to the middle Eocene (57.5 to 46.5 Ma) recorded a total of 39 hyperthermals – periods of rapid global warming documented by prominent negative carbon isotope excursions (CIEs) as well as peaks in iron content – have been recognized in marine cores. Documenting how the Earth system responded to rapid climatic shifts during hyperthermals provides fundamental information to constrain climatic models. However, while hyperthermals have been well documented in the marine sedimentary record, only a few have been recognized and described in continental deposits, thereby limiting our ability to understand the effect and record of global warming on terrestrial systems. Hyperthermals in the continental record could be a powerful correlation tool to help connect marine and continental deposits, addressing issues of environmental signal propagation from land to sea. In this study, we generate new stable carbon isotope data (δ13C values) across the well-exposed and time-constrained fluvial sedimentary succession of the early Eocene Castissent Formation in the south central Pyrenees (Spain). The δ13C values of pedogenic carbonate reveal – similarly to the global records – stepped CIEs, culminating in a minimum δ13C value that we correlate with the hyperthermal event “U” at ca. 50 Ma. This general trend towards more negative values is most probably linked to higher primary productivity leading to an overall higher respiration of soil organic matter during these climatic events. The relative enrichment in immobile elements (Zr, Ti, Al) and higher estimates of mean annual precipitation together with the occurrence of small iron oxide and iron hydroxide nodules during the CIEs suggest intensification of chemical weathering and/or longer exposure of soils in a highly seasonal climate. The results show that even relatively small-scale hyperthermals compared with their prominent counterparts, such as PETM, ETM2, and ETM3, can leave a recognizable signature in the terrestrial stratigraphic record, providing insights into the dynamics of the carbon cycle in continental environments during these events.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-14
    Description: Some 20 Myr after the Late Jurassic to Early Cretaceous obduction and collision at the eastern margin of Adria, the eroded Pelagonia (Adria)–Axios/Vardar (oceanic complex) contact collapsed, forming the Kallipetra Basin, described around the Aliakmon River near Veroia (northern Greece). Clastic and carbonate marine sediments deposited from the early Cenomanian to the end of the Turonian, with abundant olistoliths and slope failures at the base due to active normal faults. The middle part of the series is characterized by red and green pelagic limestones, with a minimal contribution of terrigenous debris. Rudist mounds in the upper part of the basin started forming on the southwestern slope, and their growth competed with a flux of ophiolitic debris, documenting the new fault scarps affecting the Vardar oceanic complex (VOC). Eventually, the basin was closed by overthrusting of the VOC towards the northeast and was buried and heated up to ∼ 180 ∘C. A strong reverse geothermal gradient with temperatures increasing up-section to near 300 ∘C is recorded beneath the VOC by illite crystallinity and by the crystallization of chlorite during deformation. This syntectonic heat partially reset the zircon fission track ages bracketing the timing of closure just after the deposition of the ophiolitic debris in the Turonian. This study documents the reworking of the Pelagonian–Axios/Vardar contact, with Cenomanian extension and basin widening followed by Turonian compression and basin inversion. Thrusting occurred earlier than previously reported in the literature for the eastern Adria and shows a vergence toward the northeast, at odds with the regional southwest vergence of the whole margin but in accordance to some reports about 50 km north.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...