ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • ozone  (2)
  • Springer  (2)
  • Blackwell Publishing Ltd
  • Cambridge University Press
  • Elsevier
  • Wiley-Blackwell
Sammlung
Verlag/Herausgeber
  • Springer  (2)
  • Blackwell Publishing Ltd
  • Cambridge University Press
  • Elsevier
  • Wiley-Blackwell
Erscheinungszeitraum
  • 1
    ISSN: 1573-5079
    Schlagwort(e): ascorbic acid ; ascorbate-glutathione cycle ; bean yield ; dehydroascorbate ; ozone ; photosynthesis ; soybean ; vegetative yield
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract We examined the characteristics of ascorbic acid (ASC) level, dehydroascorbate (DHA) level, and the ASC–DHA redox status in the leaflets of two soybean cultivars grown in a field environment and exposed to elevated ozone (O3) levels. These two cultivars, one that preliminary evidence indicated to be O3-tolerant (cv Essex), and one that was indicated to be O3-sensitive (cv Forrest), were grown in open-top chambers during the summer of 1997. The plants were exposed daily to a controlled, moderately high O3 level (≈58 nl l−1 air) in the light, beginning at the seedling stage and continuing to bean maturity. Concurrently, control plants were exposed to carbon-filtered, ambient air containing a relatively low O3 level (≈24 nl l−1 air) during the same period. Elevated O3 did not affect biomass per plant, mature leaf area accretion, or bean yield per plant of cv Essex. In contrast, elevated O3 level decreased the biomass and bean yield per plant of cv Forrest by approximately 20%. Daily leaflet photosynthesis rate and stomatal conductance per unit area did not decrease in either cultivar as a result of prolonged O3 exposure. A 10% lower mature leaflet area in O3-treated cv Forrest plants contributed to an ultimate limitation in long-term photosynthetic productivity (vegetative and bean yield). Possible factors causing cv Essex to be more O3 tolerant than cv Forrest were: 1) mature leaflets of control and O3-treated cv Essex plants consistently maintained a higher daily ASC level than leaflets of cv Forrest plants, and 2) mature leaflets of cv Essex plants maintained a higher daily ASC–DHA redox status than leaflets of cv Forrest plants.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1573-5079
    Schlagwort(e): glucose ; hexose phosphates ; ozone ; photosynthesis ; respiratory substrates ; starch ; sucrose
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The objective of this study was to determine whether exposure of plants to ozone (O3) increased the foliar levels of glucose, glucose sources, e.g., sucrose and starch, and glucose-6-phosphate (G6P), because in leaf cells, glucose is the precursor of the antioxidant, L-ascorbate, and glucose-6-phosphate is a source of NADPH needed to support antioxidant capacity. A further objective was to establish whether the response of increased levels of glucose, sucrose, starch and G6P in leaves could be correlated with a greater degree of plant tolerance to O3. Four commercially available Spinacia oleracea varieties were screened for tolerance or susceptibility to detrimental effects of O3 employing one 6.5 hour acute exposure to 25O nL O3 L-1 air during the light. One day after the termination of ozonation (29 d post emergence), leaves of the plants were monitored both for damage and for gas exchange characteristics. Cultivar Winter Bloomsdale (cv Winter) leaves were least damaged on a quantitative grading scale. The leaves of cv Nordic, the most susceptible, were approximately 2.5 times more damaged. Photosynthesis (Pn) rates in the ozonated mature leaves of cv Winter were 48.9% less, and in cv Nordic, 66.2% less than in comparable leaves of their non-ozonated controls. Stomatal conductance of leaves of ozonated plants was found not to be a factor in the lower Pn rates in the ozonated plants. At some time points in the light, leaves of ozonated cv Winter plants had significantly higher levels of glucose, sucrose, starch, G6P, G1P, pyruvate and malate than did leaves of ozonated cv Nordic plants. It was concluded that leaves of cv Winter displayed a higher tolerance to ozone mediated stress than those of cv Nordic, in part because they had higher levels of glucose and G6P that could be mobilized during diminished photosynthesis to generate antioxidants (e.g., ascorbate) and reductants (e.g., NADPH). Elevated levels of both pyruvate and malate in the leaves of ozonated cv Winter suggested an increased availability of respiratory substrates to support higher respiratory capacity needed for repair, growth, and maintenance.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...