ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Shellfish have been identified as a potential source of Cryptosporidium infection for humans. The inactivation of C. parvum and other pathogens in raw molluscan shellfish would provide increased food safety for normal and at-risk consumers. The present study examined the efficacy of two alternative food-processing treatments, e-beam irradiation and microwave energy, on the viability of C. parvum oocysts in Eastern Oysters (Crassostrea virginica), which were artificially infected with the Beltsville strain of C. parvum. The effects of the treatments were evaluated by oral feeding of the processed oyster tissues to neonatal mice. Significant reductions (P〈0.05) in infectivity were observed for in-shell and shucked oysters treated with e-beam irradiation at doses of 1.0, 1.5, or 2 kGy vs. untreated controls. A dose of 2 kGy completely eliminated C. parvum infectivity and did not adversely affect the visual appearance of the oysters. Oyster tissue treated with microwave exposures of 1 s (43.2°C), 2 s (54.0°C), and 3 s (62.5°C) showed a reduction in C. parvum mouse infectivity, but the effects were not significantly different (P〉0.05) from controls. Microwave energy treatments at 2 and 3 s showed extensive changes in oyster meat texture and color. Thus, because of lack of efficacy and unacceptable tissue changes, microwave treatment of oysters is not considered a viable food-processing method.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Shellfish have been identified as a potential source of Cryptosporidium infection for humans. The inactivation of Cryptosporidium parvum and other pathogens in raw molluscan shellfish would provide increased food safety for normal and at-risk consumers. The present study identified the efficacy of a non-thermal alternative food-processing treatment, high hydrostatic pressure processing (HPP), on the viability of C. parvum oocysts in the Eastern oysters Crassostrea virginica. Oysters were artificially exposed to 2 × 107 oocysts of the Beltsville strain of C. parvum in seawater and subjected to HPP treatments. The effects of the treatments were evaluated by inoculation of the processed oyster tissues into neonatal mice. High-pressure processing of shucked Eastern oysters at all pressures tested (305, 370, 400, 480, and 550 MPa) was significantly effective (P〈0.05) in reducing the numbers of positive mouse pups fed treated oyster tissues exposed to C. parvum oocysts. A dose of 550 MPa at 180 s (s) of holding time produced the maximum decrease in numbers of C. parvum positive mouse pups (93.3%). Measurement of tristimulus color values of HPP-treated raw oysters at extended processing times from 120 s to 360 s at 550 MPa showed a small increase in whiteness of oyster meat. This non-thermal processing treatment shows promise for commercial applications to improve safety of seafood and reduce public health risks from cryptosporidiosis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...