ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Environmental geology 36 (1998), S. 137-149 
    ISSN: 1432-0495
    Keywords: Key words Patina ; Gypsum ; Calcite ; Oxalate ; Marble ; Granite ; Limestone ; Mediterranean ; Environment ; Climatic change
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  This paper analyzes – chemically, mineralogically, and petrolographically – the patinas developed on several Mediterranean monuments made with different stones (siliceous and carbonatic) in order to establish their origin and their evolution under the present environmental conditions, and to evaluate the environmental parameters controling their development. Most of the patinas show a common sequence of layers, which, from the outer to the inner zone, are: (1) present bioactivity and/or biological remains, (2) gypsum-rich patina, and (3) calcitic brown to orange patina. Each one may exhibit different fabrics (from micritic to stromatolitic) and may be more or less continuous and homogeneous. The main mineral components are calcite and gypsum, but Ca-oxalates and Ca-phosphates have also been found associated to biological structures, as well as quartz and clays. The different fabrics and textures have been interpreted as consequence of changes in the environmental conditions which seem to be related to the biological activity, facilitating the growth of different organisms and leading to the development of a deposit with distinct characteristics (fabric, texture, porosity, etc.). The gypsum-rich patina has been interpreted as a sulphation of the underlying calcitic layer by the action of atmospheric pollutants or as dry or wet deposition from the atmospheric dust. The mineralogy and texture of the patina is independent of the nature of the underlying rock and only in few cases a micritization process has been observed as interaction between patina and rock. Recently, the penetration of endolithic microflora produced drillings and the development of a fissuration system parallel to the surface, and thus the detachment of the crust from the rock and even flackening of the rock itself has been observed. Consequently, under the present climatic conditions in the Mediterranean basin, erosion is a more active process than deposition, and the crusts and patinas show a tendency to disappear from the surface of the monuments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Tracks And Radiation Measurements (1993) 22 (1993), S. 753-756 
    ISSN: 0969-8078
    Keywords: Apatite ; Bafgh ; Calcite ; Central Iran ; FTD ; Fluorite ; Hormuz ; Obsidian ; Orumiyeh ; Sphene ; Zarigan
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 207 (1999), S. 54-66 
    ISSN: 1615-6102
    Keywords: Coccolith ; Calcite ; Biomineralization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The crystallographic and morphological configuration of the mineral ring associated with the coccoliths ofPleurochrysis carterae was determined by transmission electron microscopy and electron diffraction. Mature Pleurochrysis coccoliths consist of an oval organic base plate, a distal rim of interlocking calcite crystals, and a narrow ribbon of organic material which tethers the mineral ring to the base plate. Crystals of two distinct forms (R and V units) alternate about the rim in a quasi regular manner; their crystallographicc-axes are aligned parallel to and inclined about 63° to the coccolith plane, respectively. The mineral ring has four platelike elements: the distal-shield and outer-tube elements which form the V unit, and the proximal-shield and inner-tube elements which form the R units. The platy surfaces of both tube elements correspond to the common (10 $$\bar 1$$ 4) rhombohedral faces of calcite, and the plates of the proximal-shield element are prismatic (2 $$\overline {11}$$ 0) faces. The plates of the distal-shield element are rather curved and their orientation does not correspond to a favorable calcite face; however, for convenience they are described as approximately ( $$\bar 1$$ 108) faces, faces which rarely, if ever, develop in inorganic sources of calcite. During coccolith development the earliest habits observed for both V and R units correspond to rectangular parallelepipeds. Outgrowth from the initial V unit begins by expansion of (10 $$\bar 1$$ 4) faces which form the platy surfaces of the outer-tube element. Throughout this period of development the mineral ring is flexible, at least in an isolated state. Subsequent outgrowth of the inner-tube and proximal-shield elements from the initial R unit produces a rigid interlocking ring. The unusual ( $$\bar 1$$ 108) faces of the distal-shield element develop after the crystals are locked in place. Organic structures in intimate association with the mineral phase during its nucleation and growth include the coccolith ribbon, the calcium-polyanion particles, and the membrane of the coccolith vesicle. These structures are described in reference to their putative functions in regulating the development of V and R units.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 32 (2017): 966–979, doi:10.1002/2017PA003178.
    Description: Trace elemental ratios preserved in the calcitic skeleton of bamboo corals have been shown to serve as archives of past ocean conditions. The concentration of dissolved barium (BaSW), a bioactive nutrientlike element, is linked to biogeochemical processes such as the cycling and export of nutrients. Recent work has calibrated bamboo coral Ba/Ca, a new BaSW proxy, using corals spanning the oxygen minimum zone beneath the California Current System. However, it was previously unclear whether Ba/Cacoral records were internally reproducible. Here we investigate the accuracy of using laser ablation inductively coupled plasma mass spectrometry for Ba/Cacoral analyses and test the internal reproducibility of Ba/Ca among replicate radial transects in the calcite of nine bamboo corals collected from the Gulf of Alaska (643–720 m) and the California margin (870–2054 m). Data from replicate Ba/Ca transects were aligned using visible growth bands to account for nonconcentric growth; smoothed data were reproducible within ~4% for eight corals (n = 3 radii/coral). This intracoral reproducibility further validates using bamboo coral Ba/Ca for BaSW reconstructions. Sections of the Ba/Ca records that were potentially influenced by noncarbonate bound Ba phases occurred in regions where elevated Mg/Ca or Pb/Ca and coincided with anomalous regions on photomicrographs. After removing these regions of the records, increased Ba/Cacoral variability was evident in corals between ~800 and 1500 m. These findings support additional proxy validation to understand BaSW variability on interannual timescales, which could lead to new insights into deep sea biogeochemistry over the past several centuries.
    Description: NSF Grant Number: OCE-1420984; NOAA/OE Grant Number: NA16RP2637; MIT-WHOI Joint Program; American Geophysical Union Travel Grant; UC Davis President's Undergraduate Fellowship; Bowdoin College Gibbons Summer Research Fellowship
    Description: 2018-03-13
    Keywords: LA-ICP-MS ; Ba/Ca ; Proxy development ; Calcite ; Deep-sea coral ; Skeletal geochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-31
    Description: Dataset: In situ dissolution rates of biogenic calcites
    Description: This dataset includes biogenic and inorganic calcite and aragonite dissolution rates from the CDisK-IV cruise in the North Pacific Ocean, August 2017. We include niskin incubator alkalinity, pH, silicate, phosphate, and nitrate data, as well as calculated saturation state and dissolution rates. Rates are reported in units of g/g/day and also g/cm2/day, normalized by the specific surface areas of the materials used. Dissolution rates of inorganic aragonite and calcite, along with biogenic E. huxleyi liths, a planktic foraminifera assemblage, and a benthic foraminifera Amphistegina species, are provided, for 4 out of the 6 stations occupied on the cruise. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/856409
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1220600, NSF Division of Ocean Sciences (NSF OCE) OCE-1220302
    Keywords: Calcium Carbonate ; Dissolution ; Carbon cycle ; Calcite ; Aragonite
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-31
    Description: Dataset: In situ dissolution rates of biogenic calcites
    Description: This dataset includes biogenic and inorganic calcite and aragonite dissolution rate data from the CDisK-IV cruise in the North Pacific Ocean, August 2017. We include niskin incubator alkalinity, pH, silicate, phosphate, and nitrate data, as well as calculated saturation state and dissolution rates. Rates are reported in units of g/g/day and also g/cm2/day, normalized by the specific surface areas of the materials used. Dissolution rates of inorganic aragonite and calcite, along with biogenic E. huxleyi liths, a planktic foraminifera assemblage, and a benthic foraminifera Amphistegina species, are provided, for 4 out of the 6 stations occupied on the cruise. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/856409
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1220600, NSF Division of Ocean Sciences (NSF OCE) OCE-1220302
    Keywords: Calcium Carbonate ; Dissolution ; Carbon cycle ; Calcite ; Aragonite
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...