ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-09-19
    Description: Background: Severe shortage of liver donors and hepatocytes highlights urgent requirement of extra-liver and stem cell source of hepatocytes for treating liver-related diseases. Here we hypothesized that spermatogonial stem cells (SSCs) can directly transdifferentiate to hepatic stem-like cells capable of differentiating into mature hepatocyte-like cells in vitro without an intervening pluripotent state. Results: SSCs first changed into hepatic stem-like cells since they resembled hepatic oval cells in morphology and expressed Ck8, Ck18, Ck7, Ck19, OV6, and albumin. Importantly, they co-expressed CK8 and CK19 but not ES cell markers. Hepatic stem-like cells derived from SSCs could differentiate into small hepatocytes based upon their morphological features and expression of numerous hepatic cell markers but lacking of bile epithelial cell hallmarks. Small hepatocytes were further coaxed to differentiate into mature hepatocyte-like cells, as identified by their morphological traits and strong expression of Ck8, Ck18, Cyp7a1, Hnf3b, Alb, Tat, Ttr, albumin, and CYP1A2 but not Ck7 or CK19. Notably, these differentiated cells acquired functional attributes of hepatocyte-like cells because they secreted albumin, synthesized urea, and uptake and released indocyanine green. Moreover, phosphorylation of ERK1/2 and Smad2/3 rather than Akt was activated in hepatic stem cells and mature hepatocytes. Additionally, cyclin A, cyclin B and cyclin E transcripts and proteins but not cyclin D1 or CDK1 and CDK2 transcripts or proteins were reduced in mature hepatocyte-like cells or hepatic stem-like cells derived from SSCs compared to SSCs. Conclusions: SSCs can transdifferentiate to hepatic stem-like cells capable of differentiating into cells with morphological, phenotypic and functional characteristics of mature hepatocytes via the activation of ERK1/2 and Smad2/3 signaling pathways and the inactivation of cyclin A, cyclin B and cyclin E. This study thus provides an invaluable source of mature hepatocytes for treating liver-related diseases and drug toxicity screening and offers novel insights into mechanisms of liver development and cell reprogramming.
    Electronic ISSN: 1478-811X
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-28
    Description: Cardiovascular disease (CAD) responsible and nonalcoholic fatty liver disease (NAFLD) are both metabolic diseases, and they are mostly influenced by genetic factors. The aim of our study is to evaluate the rel...
    Electronic ISSN: 1476-511X
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-19
    Description: Seeds use environmental cues such as temperature to coordinate the timing of their germination, allowing plants to synchronize their life history with the seasons. Winter chilling is of central importance to a...
    Electronic ISSN: 1471-2229
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-07-12
    Description: Background: SWEET (MtN3_saliva) domain proteins, a recently identified group of efflux transporters, play an indispensable role in sugar efflux, phloem loading, plant-pathogen interaction and reproductive tissue development. The SWEET gene family is predominantly studied in Arabidopsis and members of the family are being investigated in rice. To date, no transcriptome or genomics analysis of soybean SWEET genes has been reported. Results: In the present investigation, we explored the evolutionary aspect of the SWEET gene family in diverse plant species including primitive single cell algae to angiosperms with a major emphasis on Glycine max. Evolutionary features showed expansion and duplication of the SWEET gene family in land plants. Homology searches with BLAST tools and Hidden Markov Model-directed sequence alignments identified 52 SWEET genes that were mapped to 15 chromosomes in the soybean genome as tandem duplication events. Soybean SWEET (GmSWEET) genes showed a wide range of expression profiles in different tissues and developmental stages. Analysis of public transcriptome data and expression profiling using quantitative real time PCR (qRT-PCR) showed that a majority of the GmSWEET genes were confined to reproductive tissue development. Several natural genetic variants (non-synonymous SNPs, premature stop codons and haplotype) were identified in the GmSWEET genes using whole genome re-sequencing data analysis of 106 soybean genotypes. A significant association was observed between SNP-haplogroup and seed sucrose content in three gene clusters on chromosome 6. Conclusion: Present investigation utilized comparative genomics, transcriptome profiling and whole genome re-sequencing approaches and provided a systematic description of soybean SWEET genes and identified putative candidates with probable roles in the reproductive tissue development. Gene expression profiling at different developmental stages and genomic variation data will aid as an important resource for the soybean research community and can be extremely valuable for understanding sink unloading and enhancing carbohydrate delivery to developing seeds for improving yield.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-01
    Description: Background: Infection with feline immunodeficiency virus (FIV) causes an immunosuppressive disease whose consequences are less severe if cats are co-infected with an attenuated FIV strain (PLV). We use virus diversity measurements, which reflect replication ability and the virus response to various conditions, to test whether diversity of virulent FIV in lymphoid tissues is altered in the presence of PLV. Our data consisted of the 3′ half of the FIV genome from three tissues of animals infected with FIV alone, or with FIV and PLV, sequenced by 454 technology. Results: Since rare variants dominate virus populations, we had to carefully distinguish sequence variation from errors due to experimental protocols and sequencing. We considered an exponential-normal convolution model used for background correction of microarray data, and modified it to formulate an error correction approach for minor allele frequencies derived from high-throughput sequencing. Similar to accounting for over-dispersion in counts, this accounts for error-inflated variability in frequencies – and quite effectively reproduces empirically observed distributions. After obtaining error-corrected minor allele frequencies, we applied ANalysis Of VAriance (ANOVA) based on a linear mixed model and found that conserved sites and transition frequencies in FIV genes differ among tissues of dual and single infected cats. Furthermore, analysis of minor allele frequencies at individual FIV genome sites revealed 242 sites significantly affected by infection status (dual vs. single) or infection status by tissue interaction. All together, our results demonstrated a decrease in FIV diversity in bone marrow in the presence of PLV. Importantly, these effects were weakened or undetectable when error correction was performed with other approaches (thresholding of minor allele frequencies; probabilistic clustering of reads). We also queried the data for cytidine deaminase activity on the viral genome, which causes an asymmetric increase in G to A substitutions, but found no evidence for this host defense strategy. Conclusions: Our error correction approach for minor allele frequencies (more sensitive and computationally efficient than other algorithms) and our statistical treatment of variation (ANOVA) were critical for effective use of high-throughput sequencing data in understanding viral diversity. We found that co-infection with PLV shifts FIV diversity from bone marrow to lymph node and spleen.
    Electronic ISSN: 1471-2105
    Topics: Biology , Computer Science
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-09-18
    Description: Background: I t is established that adipose-derived stem cells (ADSCs) produce and secrete cytokines/growth factors that antagonize mucosal injury. However, the exact molecular basis underlying the treatment effects exerted by ADSCs is ill understood, and whether ADSCs cooperate with adipose tissue particles to improve mucosal function in patients with empty nose syndrome (ENS) has not been explored. We investigated the impact of ADSCs on nasal mucosa, the associated mechanisms, and their use in the treatment of patients with ENS. Results: The nasal endoscope and mucociliary clearance assessments were significantly improved (P 
    Electronic ISSN: 2045-3701
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-01-16
    Description: Erythropoietin (EPO) is a glycoprotein hormone that plays a principal regulatory role in erythropoiesis and initiates cell homeostatic responses to environmental challenges. The Qinghai-Tibet Plateau is a natu...
    Electronic ISSN: 1471-2148
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-06-22
    Description: Background: As one of the most important but seriously endangered wild relatives of the cultivated tea,Camellia taliensis harbors valuable gene resources for tea tree improvement in the future.The knowledge of genetic variation and population structure may provide insights intoevolutionary history and germplasm conservation of the species. Results: Here, we sampled 21 natural populations from the species' range in China and performed thephylogeography of C. taliensis by using the nuclear PAL gene fragment and chloroplastrpl32-trnL intergenic spacer. Levels of haplotype diversity and nucleotide diversity detectedat rpl32-trnL (h = 0.841; pi = 0.00314) were almost as high as at PAL (h = 0.836; pi = 0.00417).Significant chloroplast DNA population subdivision was detected (GST = 0.988; NST = 0.989),suggesting fairly high genetic differentiation and low levels of recurrent gene flow throughseeds among populations. Nested clade phylogeographic analysis of chlorotypes suggests thatpopulation genetic structure in C. taliensis has been affected by habitat fragmentation in thepast. However, the detection of a moderate nrDNA population subdivision (GST = 0.222;NST = 0.301) provided the evidence of efficient pollen-mediated gene flow among populationsand significant phylogeographical structure (NST 〉 GST; P 〈 0.01). The analysis of PALhaplotypes indicates that phylogeographical pattern of nrDNA haplotypes might be caused byrestricted gene flow with isolation by distance, which was also supported by Mantel's test ofnrDNA haplotypes (r = 0.234, P 〈 0.001). We found that chlorotype C1 was fixed in sevenpopulations of Lancang River Region, implying that the Lancang River might have provideda corridor for the long-distance dispersal of the species. Conclusions: We found that C. taliensis showed fairly high genetic differentiation resulting from restrictedgene flow and habitat fragmentation. This phylogeographical study gives us deep insightsinto population structure of the species and conservation strategies for germplasm samplingand developing in situ conservation of natural populations.
    Electronic ISSN: 1471-2148
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-07-18
    Description: Background: An important challenge in cancer biology is to computationally screen mutations in cancer cells, separating those that might drive cancer initiation and progression, from the much larger number of bystanders. Since mutations are large in number and diverse in type, the frequency of any particular mutation pattern across a set of samples is low. This makes statistical distinctions and reproducibility across different populations difficult to establish. Results: In this paper we develop a novel method that promises to partially ameliorate these problems. The basic idea is although mutations are highly heterogeneous and vary from one sample to another, the processes that are disrupted when cells undergo transformation tend to be invariant across a population for a particular cancer or cancer subtype. Specifically, we focus on finding mutated pathway-groups that are invariant across samples of breast cancer subtypes. The identification of informative pathway-groups consists of two steps. The first is identification of pathways significantly enriched in genes containing non-synonymous mutations; the second uses pathways so identified to find groups that are functionally related in the largest number of samples. An application to 4 subtypes of breast cancer identified pathway-groups that can highly explicate a particular subtype and rich in processes associated with transformation. Conclusions: In contrast to previous methods that identify pathways across a set of samples without any further validation, we show that mutated pathway-groups can be found in each breast cancer subtype and that such groups are invariant across the majority of samples. The algorithm is available at http://www.visantnet.org/misi/MUDPAC.zip.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-05-03
    Description: Background: It is well established that adipose-derived stem cells (ADSCs) produce and secrete cytokines/growth factors that antagonize UV-induced photoaging of skin. However, the exact molecular basis underlying the anti-photoaging effects exerted by ADSCs is not well understood, and whether ADSCs cooperate with fractional carbon dioxide (CO2) laser to facilitate photoaging skin healing process has not been explored. Here, we investigated the impacts of ADSCs on photoaging in a photoaging animal model, its associated mechanisms, and its functional cooperation with fractional CO2 laser in treatment of photoaging skin. Results: We showed that ADSCs improved dermal thickness and activated the proliferation of dermal fibroblast. We further demonstrated that the combined treatment of ADSCs and fractional CO2 laser, the latter which is often used to resurface skin and treat wrinkles, had more beneficial effects on the photoaging skin compared with each individual treatment. In our prepared HDF photoaging model, flow cytometry showed that, after adipose derived stem cells conditioned medium (ADSC-CM) co-cultured HDF photoaging model, the cell proliferation rate is higher than UVB irradiation induced HDF modeling (p 〈 0.05). Additionally, the expressions of beta-catenin and Wnt3a, which were up-regulated after the transplantation of ADSCs alone or in combination with fractional CO2 laser treatment. And the expression of wnt3a and beta-catenin has the positive correlation with photoaging related protein TGF-beta2 and COLI. We also verified these protein expressions in tissue level. In addition, after injected SFRP2 into ADSC-CM co-cultured HDF photoaging model, wnt3a inhibitor, compared with un-intervened group, wnt3a, beta-catenin protein level significantly decreased. Conclusion: Both ADSCs and fractional CO2 laser improved photoaging skin at least partially via targeting dermal fibroblast activity which was increased in photoaging skin. The combinatorial use of ADSCs and fractional CO2 laser synergistically improved the healing process of photoaging skin. Thus, we provide a strong rationale for a combined use of ADSCs and fractional CO2 laser in treatment of photoaging skin in clinic in the future. Moreover, we provided evidence that the Wnt/beta-catenin signaling pathway may contribute to the activation of dermal fibroblast by the transplantation of ADSCs in both vitro and vivo experiment.
    Electronic ISSN: 2045-3701
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...