ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
  • 4
    Publication Date: 2016-08-24
    Electronic ISSN: 1664-302X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 8 (2017): 264, doi:10.3389/fmicb.2017.00264.
    Description: The occurrence of bacteria in the food processing environments plays a key role in food contamination and development of spoilage. Species of the genus Pseudomonas are recognized as major food spoilers and the capability to actually determine spoilage can be species- as well as strain-dependent. In order to improve the taxonomic resolution of 16S rRNA gene amplicons, in this study we used oligotyping to investigate the diversity of Pseudomonas populations in meat and dairy processing environments. Sequences of the V1–V3 regions from previous studies were used, including environmental swabs and food samples from both meat and dairy processing plants. We showed that the most frequently found oligotypes belonged to Pseudomonas fragi and P. fluorescens, that the most abundant oligotypes co-occurred, and were shared between the meat and dairy datasets. All the oligotypes occurring in foods were also identified in the environmental samples of the corresponding plants, highlighting the important role of the environment as a source of strains for food contamination. Oligotypes of the same species showed different levels depending on food processing and type of sample, suggesting that different strains of the same species can have different adaptation efficiency, leading to resilient bacterial associations.
    Keywords: Pseudomonas fragi ; Food contamination ; Food processing environment ; Oligotyping ; 16S rRNA gene sequencing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 7 (2016): 1318, doi:10.3389/fmicb.2016.01318.
    Description: Characterizing the community structure of naturally occurring microbes through marker gene amplicons has gained widespread acceptance for profiling microbial populations. The 16S ribosomal RNA (rRNA) gene provides a suitable target for most studies since (1) it meets the criteria for robust markers of evolution, e.g., both conserved and rapidly evolving regions that do not undergo horizontal gene transfer, (2) microbial ecologists have identified widely adopted primers and protocols for generating amplicons for sequencing, (3) analyses of both cultivars and environmental DNA have generated well-curated databases for taxonomic profiling, and (4) bioinformaticians and computational biologists have published comprehensive software tools for interpreting the data and generating publication-ready figures. Since the initial descriptions of high-throughput sequencing of 16S rRNA gene amplicons to survey microbial diversity, we have witnessed an explosion of association-based inferences of interactions between microbes and their environment.
    Description: AME was supported by the University of Chicago and the Marine Biological Laboratory collaboration award.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Microbiome 6 (2018): 96, doi:10.1186/s40168-018-0474-8.
    Description: Solid organ transplant recipients show heterogeneity in the occurrence and timing of acute rejection episodes. Understanding the factors responsible for such variability in patient outcomes may lead to improved diagnostic and therapeutic approaches. Rejection kinetics of transplanted organs mainly depends on the extent of genetic disparities between donor and recipient, but a role for environmental factors is emerging. We have recently shown that major alterations of the microbiota following broad-spectrum antibiotics, or use of germ-free animals, promoted longer skin graft survival in mice. Here, we tested whether spontaneous differences in microbial colonization between genetically similar individuals can contribute to variability in graft rejection kinetics. We compared rejection kinetics of minor mismatched skin grafts in C57BL/6 mice from Jackson Laboratory (Jax) and Taconic Farms (Tac), genetically similar animals colonized by different commensal microbes. Female Tac mice rejected skin grafts from vendor-matched males more quickly than Jax mice. We observed prolonged graft survival in Tac mice when they were exposed to Jax mice microbiome through co-housing or fecal microbiota transplantation (FMT) by gastric gavage. In contrast, exposure to Tac mice did not change graft rejection kinetics in Jax mice, suggesting a dominant suppressive effect of Jax microbiota. High-throughput sequencing of 16S rRNA gene amplicons from Jax and Tac mice fecal samples confirmed a convergence of microbiota composition after cohousing or fecal transfer. Our analysis of amplicon data associated members of a single bacterial genus, Alistipes, with prolonged graft survival. Consistent with this finding, members of the genus Alistipes were absent in a separate Tac cohort, in which fecal transfer from Jax mice failed to prolong graft survival. These results demonstrate that differences in resident microbiome in healthy individuals may translate into distinct kinetics of graft rejection, and contribute to interpersonal variability in graft outcomes. The association between Alistipes and prolonged skin graft survival in mice suggests that members of this genus might affect host physiology, including at sites distal to the gastrointestinal tract. Overall, these findings allude to a potential therapeutic role for specific gut microbes to promote graft survival through the administration of probiotics, or FMT.
    Description: This work was supported by NIH/NIAID R01 AI115716 to MLA.
    Keywords: Organ transplantation ; Microbiome ; Acute allograft rejection ; Fecal microbiota transplantation ; Alistipes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 358, doi:10.3389/fmicb.2015.00358.
    Description: Despite extensive direct sequencing efforts and advanced analytical tools, reconstructing microbial genomes from soil using metagenomics have been challenging due to the tremendous diversity and relatively uniform distribution of genomes found in this system. Here we used enrichment techniques in an attempt to decrease the complexity of a soil microbiome prior to sequencing by submitting it to a range of physical and chemical stresses in 23 separate microcosms for 4 months. The metagenomic analysis of these microcosms at the end of the treatment yielded 540 Mb of assembly using standard de novo assembly techniques (a total of 559,555 genes and 29,176 functions), from which we could recover novel bacterial genomes, plasmids and phages. The recovered genomes belonged to Leifsonia (n = 2), Rhodanobacter (n = 5), Acidobacteria (n = 2), Sporolactobacillus (n = 2, novel nitrogen fixing taxon), Ktedonobacter (n = 1, second representative of the family Ktedonobacteraceae), Streptomyces (n = 3, novel polyketide synthase modules), and Burkholderia (n = 2, includes mega-plasmids conferring mercury resistance). Assembled genomes averaged to 5.9 Mb, with relative abundances ranging from rare (〈0.0001%) to relatively abundant (〉0.01%) in the original soil microbiome. Furthermore, we detected them in samples collected from geographically distant locations, particularly more in temperate soils compared to samples originating from high-latitude soils and deserts. To the best of our knowledge, this study is the first successful attempt to assemble multiple bacterial genomes directly from a soil sample. Our findings demonstrate that developing pertinent enrichment conditions can stimulate environmental genomic discoveries that would have been impossible to achieve with canonical approaches that focus solely upon post-sequencing data treatment.
    Description: This research was supported by the French National Research Agency (Agence National de Recherche) project Metasoil (Projet ANR-08-GENM-025). TOD was funded by the Rhone-Alpes Région. LM was supported with a PhD fellowship from the Région Rhône-Alpes.
    Keywords: Rare biosphere ; Soil ; Metagenomics ; Environmental genomics ; Plasmids ; Phages
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.ms-excel
    Format: application/pdf
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 6 (2015): 1090, doi:10.3389/fmicb.2015.01090.
    Description: Antarctica polynyas support intense phytoplankton blooms, impacting their environment by a substantial depletion of inorganic carbon and nutrients. These blooms are dominated by the colony-forming haptophyte Phaeocystis antarctica and they are accompanied by a distinct bacterial population. Yet, the ecological role these bacteria may play in P. antarctica blooms awaits elucidation of their functional gene pool and of the geochemical activities they support. Here, we report on a metagenome (~160 million reads) analysis of the microbial community associated with a P. antarctica bloom event in the Amundsen Sea polynya (West Antarctica). Genomes of the most abundant Bacteroidetes and Proteobacteria populations have been reconstructed and a network analysis indicates a strong functional partitioning of these bacterial taxa. Three of them (SAR92, and members of the Oceanospirillaceae and Cryomorphaceae) are found in close association with P. antarctica colonies. Distinct features of their carbohydrate, nitrogen, sulfur and iron metabolisms may serve to support mutualistic relationships with P. antarctica. The SAR92 genome indicates a specialization in the degradation of fatty acids and dimethylsulfoniopropionate (compounds released by P. antarctica) into dimethyl sulfide, an aerosol precursor. The Oceanospirillaceae genome carries genes that may enhance algal physiology (cobalamin synthesis). Finally, the Cryomorphaceae genome is enriched in genes that function in cell or colony invasion. A novel pico-eukaryote, Micromonas related genome (19.6 Mb, ~94% completion) was also recovered. It contains the gene for an anti-freeze protein, which is lacking in Micromonas at lower latitudes. These draft genomes are representative for abundant microbial taxa across the Southern Ocean surface.
    Description: This work was performed with financial support from NSF Antarctic Sciences awards ANT-1142095 to AP.
    Keywords: Southern Ocean ; Amundsen Sea Polynya ; Phytoplankton bloom ; Phaeocystis ; Micromonas ; Microbial communities ; Metagenomics ; Genome reconstruction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.ms-excel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...