ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Association for the Sciences of Limnology and Oceanography  (1)
  • Wiley Open Access  (1)
  • 1
    Publication Date: 2022-11-15
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Eagle, M. J., Kroeger, K. D., Spivak, A. C., Wang, F., Tang, J., Abdul-Aziz, O. I., Ishtiaq, K. S., O’Keefe Suttles, J., & Mann, A. G. Soil carbon consequences of historic hydrologic impairment and recent restoration in coastal wetlands. The Science of the Total Environment, 848, (2022): 157682, https://doi.org/10.1016/j.scitotenv.2022.157682.
    Description: Coastal wetlands provide key ecosystem services, including substantial long-term storage of atmospheric CO2 in soil organic carbon pools. This accumulation of soil organic matter is a vital component of elevation gain in coastal wetlands responding to sea-level rise. Anthropogenic activities that alter coastal wetland function through disruption of tidal exchange and wetland water levels are ubiquitous. This study assesses soil vertical accretion and organic carbon accretion across five coastal wetlands that experienced over a century of impounded hydrology, followed by restoration of tidal exchange 5 to 14 years prior to sampling. Nearby marshes that never experienced tidal impoundment served as controls with natural hydrology to assess the impact of impoundment and restoration. Dated soil cores indicate that elevation gain and carbon storage were suppressed 30–70 % during impoundment, accounting for the majority of elevation deficit between impacted and natural sites. Only one site had substantial subsidence, likely due to oxidation of soil organic matter. Vertical and carbon accretion gains were achieved at all restored sites, with carbon burial increasing from 96 ± 33 to 197 ± 64 g C m−2 y−1. The site with subsidence was able to accrete at double the rate (13 ± 5.6 mm y−1) of the natural complement, due predominantly to organic matter accumulation rather than mineral deposition, indicating these ecosystems are capable of large dynamic responses to restoration when conditions are optimized for vegetation growth. Hydrologic restoration enhanced elevation resilience and climate benefits of these coastal wetlands.
    Description: This project was supported by the U.S. Geological Survey Coastal and Marine Hazards and Resources Program and the USGS Land Change Science Program's LandCarbon program, NOAA National Estuarine Research Reserve Science Collaborative NA14NOS4190145, and MIT Sea Grant 2015-R/RC-141. Contributions of Abdul-Aziz were also supported by NSF CBET Environmental Sustainability Award No. 1705941. Our stakeholder partners, including the Cape Cod National Seashore, Waquoit Bay National Estuarine Research Reserve, and the Bringing Wetlands to Market project team, and Towns and Conservation Commissions, including Eastham, Barnstable, Brewster, Yarmouth, Denis, Sandwich and Orleans, were instrumental in providing research support and site access.
    Keywords: Salt marsh ; Restoration ; Impoundment ; Soil organic carbon ; Vertical accretion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wang, F., Kroeger, K. D., Gonneea, M. E., Pohlman, J. W., & Tang, J. Water salinity and inundation control soil carbon decomposition during salt marsh restoration: An incubation experiment. Ecology and Evolution, 9(4), (2019):1911-1921, doi:10.1002/ece3.4884.
    Description: Coastal wetlands are a significant carbon (C) sink since they store carbon in anoxic soils. This ecosystem service is impacted by hydrologic alteration and management of these coastal habitats. Efforts to restore tidal flow to former salt marshes have increased in recent decades and are generally associated with alteration of water inundation levels and salinity. This study examined the effect of water level and salinity changes on soil organic matter decomposition during a 60‐day incubation period. Intact soil cores from impounded fresh water marsh and salt marsh were incubated after addition of either sea water or fresh water under flooded and drained water levels. Elevating fresh water marsh salinity to 6 to 9 ppt enhanced CO2 emission by 50%−80% and most typically decreased CH4 emissions, whereas, decreasing the salinity from 26 ppt to 19 ppt in salt marsh soils had no effect on CO2 or CH4 fluxes. The effect from altering water levels was more pronounced with drained soil cores emitting ~10‐fold more CO2 than the flooded treatment in both marsh sediments. Draining soil cores also increased dissolved organic carbon (DOC) concentrations. Stable carbon isotope analysis of CO2 generated during the incubations of fresh water marsh cores in drained soils demonstrates that relict peat OC that accumulated when the marsh was saline was preferentially oxidized when sea water was introduced. This study suggests that restoration of tidal flow that raises the water level from drained conditions would decrease aerobic decomposition and enhance C sequestration. It is also possible that the restoration would increase soil C decomposition of deeper deposits by anaerobic oxidation, however this impact would be minimal compared to lower emissions expected due to the return of flooding conditions.
    Description: We acknowledge collaboration and support from Tim Smith of the Cape Cod National Seashore, James Rassman and Tonna‐Marie Surgeon‐Rogers of the Waquoit Bay National Estuarine Research Reserve, Margot McKlveen of the Marine Biological Laboratory, Jennifer O'keefe Suttles, Wally Brooks and Michael Casso of the USGS, and Amanda Spivak of the Woods Hole Oceanographic Institution. This study was funded by the NOAA National Estuarine Research Reserve Science Collaborative (NA09NOS4190153 and NA14NOS4190145) awarded to JT and KK, MIT Sea Grant (2015‐R/RC‐141), and USGS‐Land Carbon and Coastal & Marine Geology projects. F.W. was also supported by funding from Natural Science Foundation of China (31300419, 31670621, 31870463). Any use of trade names is for descriptive purposes and does not imply endorsement by the U.S. government.
    Keywords: carbon dioxide ; greenhouse gas ; methane ; restoration ; salt marsh
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...