ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (92)
Collection
Journal
  • 1
    Publication Date: 2015-11-26
    Description: Current models used to assess earthquake and tsunami hazards are inadequate where creep dominates a subduction megathrust. Here we report geological evidence for large tsunamis, occurring on average every 300–340 years, near the source areas of the 1946 and 1957 Aleutian tsunamis. These areas bookend a postulated seismic gap over 200 km long where modern geodetic measurements indicate that the megathrust is currently creeping. At Sedanka Island, evidence for large tsunamis includes six sand sheets that blanket a lowland facing the Pacific Ocean, rise to 15 m above mean sea level, contain marine diatoms, cap terraces, adjoin evidence for scour, and date from the past 1700 years. The youngest sheet, and modern drift logs found as far as 800 m inland and 〉18 m elevation, likely record the 1957 tsunami. Modern creep on the megathrust coexists with previously unrecognized tsunami sources along this part of the Aleutian Subduction Zone.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-28
    Description: Great subduction earthquakes are thought to rupture portions of the megathrust where interseismic coupling is high and velocity-weakening frictional behavior is dominant, releasing elastic deformation accrued over a seismic cycle. Conversely, post-seismic afterslip is assumed to occur primarily in regions of velocity-strengthening frictional characteristics that may correlate with lower interseismic coupling. However, it remains unclear if fixed frictional properties of the subduction interface, co-seismic or aftershock-induced stress redistribution, or other factors control the spatial distribution of afterslip. Here, we use InSAR and GPS observations to map the distribution of co-seismic slip of the 2015 M w 8.3 Illapel, Chile earthquake and afterslip within the first 38 days following the earthquake. We find that afterslip overlaps the co-seismic slip area and propagates along-strike into regions of both high and moderate interseismic coupling. The significance of these observations, however, is tempered by the limited resolution of geodetic inversions for both slip and coupling. Additional afterslip imaged deeper on the fault surface bounds a discrete region of deep co-seismic slip, and both contribute to net uplift of the Chilean Coastal Cordillera. A simple partitioning of the subduction interface into regions of fixed frictional properties cannot reconcile our geodetic observations. Instead, stress heterogeneities, either pre-existing or induced by the earthquake, likely provide the primary control on the afterslip distribution for this subduction zone earthquake. We also explore the occurrence of co- and post-seismic coastal uplift in this sequence and its implications for recent hypotheses concerning the source of permanent coastal uplift along subduction zones.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-04-17
    Description: To gain insight into the longevity of subduction zone segmentation, we use coral microatolls to examine an 1100-year record of large earthquakes across the boundary of the great 2004 and 2005 Sunda megathrust ruptures. Simeulue, a 100-km-long island off the west coast of northern Sumatra, Indonesia, straddles this boundary: northern Simeulue was uplifted in the 2004 earthquake, whereas southern Simeulue rose in 2005. Northern Simeulue corals reveal that predecessors of the 2004 earthquake occurred in the 10th century AD, in AD 1394 ± 2, and in AD 1450 ± 3. Corals from southern Simeulue indicate that none of the major uplifts inferred on northern Simeulue in the past 1100 years extended to southern Simeulue. The two largest uplifts recognized at a south-central Simeulue site—around AD 1422 and in 2005—involved little or no uplift of northern Simeulue. The distribution of uplift and strong shaking during a historical earthquake in 1861 suggests the 1861 rupture area was also restricted to south of central Simeulue, as in 2005. The strikingly different histories of the two adjacent patches demonstrate that this boundary has persisted as an impediment to rupture through at least seven earthquakes in the past 1100 years. This implies that the rupture lengths, and hence sizes, of at least some future great earthquakes and tsunamis can be forecast. These microatolls also provide insight into megathrust behavior between earthquakes, revealing sudden and substantial changes in interseismic strain accumulation rates.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-20
    Description: Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers The ISME Journal 10, 427 (February 2016). doi:10.1038/ismej.2015.124 Authors: Sarah J Spencer, Manu V Tamminen, Sarah P Preheim, Mira T Guo, Adrian W Briggs, Ilana L Brito, David A Weitz, Leena K Pitkänen, Francois Vigneault, Marko PJuhani Virta & Eric J Alm
    Print ISSN: 1751-7362
    Electronic ISSN: 1751-7370
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Abstract The recent proliferation of high‐resolution (〈3‐m spatial resolution) digital topography data sets opens a spectrum of geodetic applications in differential topography, including the quantification of coseismic vertical displacement fields. Most investigations of coseismic vertical displacements to date rely, in part, on preevent or postevent lidar surveys that are intractable or nonexistent in many locales. Stereogrammetric digital surface models (DSMs) derived from high‐resolution satellite optical imagery provide a new avenue for the retrieval of spatially dense vertical coseismic displacements on a global scale. In this study, we generated 2‐m resolution preseismic and postseismic DSMs from satellite optical imagery spanning the 2013 Mw7.7 Baluchistan strike‐slip earthquake that occurred on the Hoshab fault in southern Pakistan. We applied the Iterative Closest Point algorithm to the DSMs to quantify the coseismic vertical displacement field at a spatial resolution of 10–30 m and to generate 3‐D coseismic strain tensors. We found that across‐fault vertical offsets alternated between uplift and subsidence and varied between ~1 and 3 m in a nonsystematic manner along the Hoshab fault. We show that the preexisting topography and near‐fault geomorphology are variably consistent and inconsistent with the displacement kinematics of the 2013 earthquake, and we argue that these relationships highlight varied slip sense history along the Hoshab fault. Notably, topography along the southern extents of the Hoshab fault requires different surface displacement kinematics than occurred in the 2013 earthquake, suggesting that the Hoshab fault accommodates varying senses of slip (bimodal slip) through time.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-03-28
    Description: Can a predominantly creeping segment of a subduction zone generate a great (M 〉 8) earthquake? Despite Russian accounts of strong shaking and high tsunamis in 1788, geodetic observations above the Aleutian megathrust indicate creeping subduction across the Shumagin Islands segment, a well-known seismic gap. Seeking evidence for prehistoric great earthquakes, we investigated Simeonof Island, the archipelago's easternmost island, and found no evidence for uplifted marine terraces or subsided shorelines. Instead, we found freshwater peat blanketing lowlands, and organic-rich silt and tephra draping higher glacially-smoothed bedrock. Basal peat ages place glacier retreat prior to 10.4 ka and imply slowly rising (〈0.2 m/ka) relative sea level since ~3.4 ka. Storms rather than tsunamis probably deposited thin, discontinuous deposits in coastal sites. If rupture of the megathrust beneath Simeonof Island produced great earthquakes in the late Holocene, then coseismic uplift or subsidence was too small (≤0.3 m) to perturb the onshore geologic record.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-03-28
    Description: We report stratigraphic evidence of land-level change and tsunami inundation along the Alaska-Aleutian megathrust during prehistoric and historical earthquakes west of Kodiak Island. On Sitkinak Island, cores and tidal outcrops fringing a lagoon reveal five sharp lithologic contacts that record coseismic land-level change. Radiocarbon dates, 137 Cs profiles, computerized tomography scans, and microfossil assemblages are consistent with rapid uplift ca. 290-0, 520-300, and 1050-790 cal yr BP, and subsidence in AD 1964 and ca. 640-510 cal yr BP. Radiocarbon, 137 Cs, and 210 Pb ages bracketing a sand bed traced 1.5 km inland and evidence for sudden uplift are consistent with Russian accounts of an earthquake and tsunami in AD 1788. The mixed uplift and subsidence record suggests that Sitkinak Island sits above a non-persistent boundary near the southwestern limit of the AD 1964 Mw 9.2 megathrust rupture.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-04-05
    Description: The dextral-slip Mohawk Valley fault zone (MVFZ) strikes northwestward along the eastern margin of the Sierra Nevada and is the westernmost member of a network of active right-lateral strike-slip faults in the northern Walker Lane. Recent geodetic block modeling indicates that the MVFZ may accommodate as much as ~3 mm/yr of regional dextral strain, implying that it is the highest slip-rate strike-slip fault in the region; however, only limited geologic data are available to constrain the system's slip rate and earthquake history. We mapped a complex, anastomosing network of MVFZ strands using high-resolution, airborne lidar data and field observations, and identified a site near Sulphur Creek for paleoseismic investigation. At this site, oblique dextral-normal faulting on the steep valley margin has created a closed depression that floods annually during spring snowmelt to form an ephemeral, shallow pond. We excavated three fault-perpendicular trenches at the site and exposed fine-grained, pond sediment that interfingers with multiple colluvial packages eroded from the scarp that bounds the eastern side of the pond. We interpret the colluvial packages, as well as other stratigraphic and structural relationships as evidence of four surface-rupturing earthquakes (E1-E4) on this strand of the MVFZ. OxCal modeling of radiocarbon and luminescence ages indicate these earthquakes occurred at: E4 = 14.0 ± 1.0 ka, E3 = 12.8 ± 1.4 ka, E2 = 5.7 ± 3.0 ka, and E1 = 1.9 ± 0.1 ka (2 sigma). These times yield a closed mean recurrence time of 4.0 ± 3.0 kyr. The mean 4.0 kyr recurrence interval is inconsistent with slip rates of ~3 mm/yr derived from geodetic block models; these relatively high rates imply surface ruptures of more than 10 m per event, which is geologically implausible for the subdued geomorphic expression and 60 km length of the MVFZ. We propose that unidentified structures that are not yet incorporated into geodetic models may accommodate a significant amount of regional dextral shear across the northern Walker Lane, highlighting the role of distributed deformation in this region.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Abstract Three sequences of well‐documented, major ~M7+ earthquakes (1811‐1812 CE, ~1450 CE, and ~900 CE) in the New Madrid seismic zone, USA, contribute significantly to seismic hazard in the region. However, it is unknown whether this 〈550 yr recurrence interval has been constant throughout the Holocene given limited geomorphic evidence of prior earthquakes. We extend the record of paleoearthquakes along the Reelfoot fault via investigation of ridge‐top gravitational failure features, interpreted as sackungen. The sackungen occur in bluffs along the eastern margin of the Mississippi River floodplain and are concentrated near (〈15 km) the southwest‐dipping Reelfoot reverse fault. A paleoseismic trench excavated across sackungen at the Paw Paw site exposed four packages of colluvial sediment that postdate 30‐11 ka Peoria Loess. We interpret the colluvial packages to have been deposited following episodic failure of the sackungen as a result of strong ground motions from the following sequence of earthquakes: event 4, 1640 ± 1730 BCE; event 3, 270 ± 670 CE; event 2, 1430 ± 380 CE; and event 1, 1810 ± 50 CE (2‐sigma). Event timing corresponds to previously documented earthquakes and represents the longest archive of paleoearthquakes on the Reelfoot fault. If the trenched sackungen record all major Reelfoot fault earthquakes, our observations in combination with prior investigations indicate a period of quiescence from at least 11 – 4.7 ka, followed by four major seismic events culminating in the 1811‐1812 CE sequence. This clustered earthquake recurrence pattern helps place bounds on seismic‐hazard and geodynamic models in the New Madrid seismic zone.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-06-19
    Description: The Kuiper belt is a collection of small bodies (Kuiper belt objects, KBOs) that lie beyond the orbit of Neptune and which are believed to have formed contemporaneously with the planets. Their small size and great distance make them difficult to study. KBO 55636 (2002 TX(300)) is a member of the water-ice-rich Haumea KBO collisional family. The Haumea family are among the most highly reflective objects in the Solar System. Dynamical calculations indicate that the collision that created KBO 55636 occurred at least 1 Gyr ago. Here we report observations of a multi-chord stellar occultation by KBO 55636, which occurred on 9 October 2009 ut. We find that it has a mean radius of 143 +/- 5 km (assuming a circular solution). Allowing for possible elliptical shapes, we find a geometric albedo of in the V photometric band, which establishes that KBO 55636 is smaller than previously thought and that, like its parent body, it is highly reflective. The dynamical age implies either that KBO 55636 has an active resurfacing mechanism, or that fresh water-ice in the outer Solar System can persist for gigayear timescales.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elliot, J L -- Person, M J -- Zuluaga, C A -- Bosh, A S -- Adams, E R -- Brothers, T C -- Gulbis, A A S -- Levine, S E -- Lockhart, M -- Zangari, A M -- Babcock, B A -- Dupre, K -- Pasachoff, J M -- Souza, S P -- Rosing, W -- Secrest, N -- Bright, L -- Dunham, E W -- Sheppard, S S -- Kakkala, M -- Tilleman, T -- Berger, B -- Briggs, J W -- Jacobson, G -- Valleli, P -- Volz, B -- Rapoport, S -- Hart, R -- Brucker, M -- Michel, R -- Mattingly, A -- Zambrano-Marin, L -- Meyer, A W -- Wolf, J -- Ryan, E V -- Ryan, W H -- Morzinski, K -- Grigsby, B -- Brimacombe, J -- Ragozzine, D -- Montano, H G -- Gilmore, A -- England -- Nature. 2010 Jun 17;465(7300):897-900. doi: 10.1038/nature09109.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. jle@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20559381" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...