ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (68)
  • Marine Geosciences and Applied Geophysics  (68)
  • Oxford University Press  (68)
  • Annual Reviews
  • National Academy of Sciences
  • 1
    Publication Date: 2016-07-25
    Description: Typically, seismic data are sparsely and irregularly sampled due to limitations in the survey environment and these cause problems for key seismic processing steps such as surface-related multiple elimination or wave-equation-based migration. Various interpolation techniques have been developed to alleviate the problems caused by sparse and irregular sampling. Among many interpolation techniques, matching pursuit interpolation is a robust tool to interpolate the regularly sampled data with large receiver separation such as crossline data in marine seismic acquisition when both pressure and particle velocity data are used. Multicomponent matching pursuit methods generally used the sinusoidal basis function, which have shown to be effective for interpolating multicomponent marine seismic data in the crossline direction. In this paper, we report the use of wavelet basis functions which further enhances the performance of matching pursuit methods for de-aliasing than sinusoidal basis functions. We also found that the range of the peak wavenumber of the wavelet is critical to the stability of the interpolation results and the de-aliasing performance and that the range should be determined based on Nyquist criteria. In addition, we reduced the computational cost by adopting the inner product of the wavelet and the input data to find the parameters of the wavelet basis function instead of using L-2 norm minimization. Using synthetic data, we illustrate that for aliased data, wavelet-based matching pursuit interpolation yields more stable results than sinusoidal function-based one when we use not only pressure data only but also both pressure and particle velocity together.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-10
    Description: A LArge Reservoir Simulator (LARS) was equipped with an electrical resistivity tomography (ERT) array to monitor hydrate formation and dissociation experiments. During two hydrate formation experiments reaching 90 per cent bulk hydrate saturation, frequent measurements of the electrical properties within the sediment sample were performed. Subsequently, several common mixing rules, including two different interpretations of Archie's law, were tested to convert the obtained distribution of the electrical resistivity into the spatial distribution of local hydrate saturation. It turned out that the best results estimating values of local hydrate saturation were obtained using the Archie var – phi approach where the increasing hydrate phase is interpreted as part of the sediment grain framework reducing the sample's porosity. These values of local hydrate saturation were used to determine local permeabilities by applying the Carman-Kozeny relation. The formed hydrates were dissociated via depressurization. The decomposition onset as well as areas featuring hydrates and free gas were inferred from the ERT results. Supplemental consideration of temperature and pressure data granted information on discrete areas of hydrate dissociation.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-12-25
    Description: In recent years, marine controlled source electromagnetics (CSEM) has found increasing use in hydrocarbon exploration due to its ability to detect thin resistive zones beneath the seafloor. It is the purpose of this paper to evaluate the physics of CSEM for an ocean whose electrical thickness is comparable to or much thinner than that of the overburden using the in-line configuration through examination of the elliptically polarized seafloor electric field, the time-averaged energy flow depicted by the real part of the complex Poynting vector, energy dissipation through Joule heating and the Fréchet derivatives of the seafloor field with respect to the subseafloor conductivity that is assumed to be isotropic. The deep water (ocean layer electrically much thicker than the overburden) seafloor EM response for a model containing a resistive reservoir layer has a greater amplitude and reduced phase as a function of offset compared to that for a half-space, or a stronger and faster response. For an ocean whose electrical thickness is comparable to or much smaller than that of the overburden, the electric field displays a greater amplitude and reduced phase at small offsets, shifting to a stronger amplitude and increased phase at intermediate offsets and a weaker amplitude and enhanced phase at long offsets, or a stronger and faster response that first changes to stronger and slower, and then transitions to weaker and slower. These transitions can be understood by visualizing the energy flow throughout the structure caused by the competing influences of the dipole source and guided energy flow in the reservoir layer, and the air interaction caused by coupling of the entire subseafloor resistivity structure with the sea surface. A stronger and faster response occurs when guided energy flow is dominant, while a weaker and slower response occurs when the air interaction is dominant. However, at intermediate offsets for some models, the air interaction can partially or fully reverse the direction of energy flux in the reservoir layer toward rather than away from the source, resulting in a stronger and slower response. The Fréchet derivatives are dominated by preferential sensitivity to the reservoir layer conductivity for all water depths except at high frequencies, but also display a shift with offset from the galvanic to the inductive mode in the underburden and overburden due to the interplay of guided energy flow and the air interaction. This means that the sensitivity to the horizontal conductivity is almost as strong as to the vertical component in the shallow parts of the subsurface, and in fact is stronger than the vertical sensitivity deeper down. However, the sensitivity to horizontal conductivity is still weak compared to the vertical component within thin resistive regions. The horizontal sensitivity is gradually decreased when the water becomes deep. These observations in part explain the success of shallow towed CSEM using only measurements of the in-line component of the electric field.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-03
    Description: Volcanic and tectonic events are the main processes involved in the generation of the oceanic crust and responsible for the seismicity associated with seafloor spreading. To monitor this activity, usually not or poorly detected by land-based seismological stations, we deployed from February 2012 to February 2013 a network of autonomous hydrophones to compare the behaviour of the ultraslow-spreading Southwest Indian ridge (SWIR) with that of the intermediate-spreading Southeast Indian ridge (SEIR). The rate of seismicity is similar for both ridges, suggesting that there is no systematic relationship between seismicity and spreading rates. The along-axis distribution of the seismic events, however, does differ, reflecting the rate dependence of accretion modes. Earthquakes are sparse and regularly spaced and scattered along the SWIR, reflecting prevailing tectonic processes. By contrast, along the SEIR, events are irregularly distributed and focus at ridge-segment ends and transforms faults, reflecting the ridge segmentation; only two swarms occurred at a segment centre and are probably caused by a magmatic event. This seismicity distribution thus looks controlled by segment-scale crustal heterogeneities along the SEIR and by regional-scale contrasting accretion processes along the SWIR, probably driven by different lithospheric and asthenospheric dynamics on either side of the Melville fracture zone. The comparison of hydroacoustic and teleseismic catalogues shows that, along these spreading ridges, the background seismicity observed in 1 yr by a hydroacoustic network is representative of the seismicity observed over two decades by land-based networks.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-06-03
    Description: Geothermal well GRT-1 (Rittershoffen, Alsace) was drilled in 2012. Its open-hole section (extending down to a depth of 2.6 km) penetrated fractured sandstones and granite. In 2013, the well was subjected to Thermal, Chemical and Hydraulic (TCH) stimulation, which improved the injectivity index fivefold. The goal of the study was to assess the impact of the stimulation by comparing pre- and post-stimulation well-logging (acoustic and temperature [ T ] logs) and mud-logging data. This comparison revealed modifications of almost all the natural fractures. However, not all of these fractures are associated with permeability enhancement, and the post-stimulation T logs are important for characterizing this enhancement. Chemical alteration due to mechanical erosion at the tops and bottoms of the fractures was observed in the sandstones. These zones display indications of very small new permeability after the TCH stimulation. Because a major fault zone caved extensively where it crosses the borehole, it was not imaged in the acoustic logs. However, this originally permeable zone was enhanced as demonstrated by the T logs. Based on the natural injectivity of this fault zone, hydraulic erosion and thermal microcracking of its internal quartz veins are associated with this permeability enhancement. Although local changes in the borehole wall observed in the acoustic images cannot be directly linked to the improved injectivity index, the comparison of the acoustic image logs allows for identification of fracture zones impacted by the TCH stimulation.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-30
    Description: We present a series of processes for understanding and analysing controlled-source electromagnetic (CSEM) responses for a conductive and permeable earth. To realize the CSEM response, a new 3-D CSEM forward modelling algorithm based on an edge finite element method for both electrically conductive and magnetically permeable heterogeneities is developed. The algorithm shows highly accurate results in validation tests against a semi-analytic solution for stratified earth and an integral form of the scattered field. We describe the vector behaviour of an anomalous magnetic field originating from a conductive and permeable anomaly when the loop sources are deployed over a conductive half-space. The CSEM response of the conductive and permeable anomaly is classified into three effects originating from: conductivity perturbations, permeability perturbations and the coupling of these two effects. The separated individual results and the corresponding integral equation form of the anomalous field help to better understand the physical behaviour. We confirm the characteristic features of the CSEM response from the conductive and permeable anomaly, for example, (1) the general dominance of the induction effect in the out-of-phase response accompanied by a non-negligible magnetization effect from the magnetic anomaly in a conductive half-space and (2) the dominance of near frequency-independent magnetization effects in the in-phase response at relatively low frequencies and change in ruling part of the in-phase response into the induction effect as the frequency increases. We also demonstrate the effect of coupling mode and show that its maximum contribution is limited to a few per cent level of other two modes, induction and magnetization mode, even when the heterogeneity of our model is strong. In our synthetic survey, using examples of land-based profiling surveys of low induction number and intermediate regime, we find that the effect of magnetization can be used as an indicator of the existence of magnetic material. One important point to note from this study is the importance of accurate cancelling-out or estimation of free-space responses, which can mask the magnetic responses to imaging the varying magnetic property.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-02-20
    Description: Maximizing vertical resolution is a key objective in seismic data processing. Early deconvolution and spectral balancing algorithms assumed that the seismic source wavelet was temporally invariant, or stationary. In practice, seismic scattering and attenuation give rise to non-stationary seismic source wavelets. To address this issue, most conventional time-varying deconvolution wavelet shaping and spectral modelling techniques using the stationary polynomial fitting assume the wavelet to be locally stationary within a small number of overlapping analysis windows while the fitting coefficients are invariant with all the frequencies. In this paper, we show an improvement obtained by modelling smoothly varying spectra of the seismic wavelet using non-stationary polynomial fitting in the time–frequency domain. We first decompose each seismic trace using a generalized S-transform that provides a good time–frequency distribution for the estimation of the time-varying wavelet spectra. We then model the slowly varying source wavelet spectrum at each time sample by a smooth low-order polynomial. Finally, we spectrally balance the modelled wavelet to flatten the seismic response, thereby increasing vertical resolution. We calibrate the algorithm on a simple synthetic and then apply it to a 3-D land survey acquired in western China, showing the value on both vertical slices through seismic amplitude and attribute time slices. Our new algorithm significantly improves the vertical resolution of the seismic signal, while not increasing the noise.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-23
    Description: Compressional and shear wave seismic measurements were performed in an old railway tunnel and in galleries excavated in a 250-m-thick Toarcian claystone formation in the Tournemire experimental station (France). Three component (3C) geophones and three orthogonal orientations of the vibroseismic force source were used. Additionally, vertical seismic profiling (VSP) measurements were recorded with a 3C borehole geophone, a hydrophone and a microphone in a 159 m deep borehole (ID180) in the tunnel. The seismic data show that Toarcian claystone has strong transverse isotropy (TI) with a vertical symmetry axis. The qP , SH and qSV wave propagation velocities in horizontal directions—the plane of isotropy of the TI medium—are measured as 3550, 1850 and 1290 m s –1 , respectively. The zero-offset VSP reveals that only one shear wave propagates in the vertical (depth) direction and the P - and S -wave velocities are 3100 and 1375 m s –1 , respectively. Four elastic moduli of the TI medium are determined from the seismic velocities and from the bulk density of 2.53 g cm –3 : c 11 = 31.9 GPa, c 33 = 24.3 GPa, c 44 = 4.5 GPa and c 66 = 8.7 GPa. A walkaway VSP with the borehole geophone at 50 m depth in borehole ID180 and shot points in the galleries leads to oblique seismic ray paths which allow us to determine the fifth elastic modulus of the TI medium to c 13 = 16 GPa. The tube wave recorded by a hydrophone in the water filled lower part of the borehole propagates with 1350 m s –1 , which confirms the estimate of the elastic constant c 66 . The analysis of body wave and surface wave data from a seismic experiment in Galerie Est shows reflections from several fracture zones in the gallery floor. The thickness of the excavation damaged zone (EDZ) in the floor of Galerie Est is estimated to 0.7 m.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-01-01
    Description: Electrical resistivity tomography (ERT) is a useful tool to detect and track water flow paths in the subsoil. However, measurements are strongly affected by subsurface heterogeneities such as fissures of different sizes and genesis (shrinking-swelling, macropores and deformation). In this work, we focus on surface fissures characterized by dimensions lower than the interelectrode spacing and correct their effect on apparent resistivity pseudo-sections by incorporating fissure geometry in the topography. We show that fissures with depths greater than 0.10 times the interelectrode spacing for a dipole–dipole array and equal to 0.16 for the gradient array and the Wenner–Schlumberger arrays create significant anomalies (greater than 5 per cent) in the pseudo-section. Surface fissure widths and dip angles have little effect with respect to the fissure depths which can increase the apparent resistivity up to 200 per cent. The clogging of the fissures with water or soil material decreases the anomaly effect linearly with the percentage of filling. The correction of apparent resistivity values is possible for relatively simple fissure geometries and only requires a manual survey of the surface fissures. It allows to improve the quality of the inverted resistivity section by mitigating the inversion artefacts and therefore a better interpretation.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-06-21
    Description: We show analytically that a well-known transfer function previously derived for the scalar acoustic problem that converts measurements from a 3-D (real-world) setting to a 2-D equivalent is directly applicable to the vector electromagnetic borehole ground penetrating radar problem. We also show that the transfer function's precision is improved for the low-loss case through the use of complex velocity. The transfer function has a strong effect on amplitude, and is therefore a critical preprocessing step for 2-D full-wave inversion when finding conductivity is of concern. We demonstrate the effectiveness of the transfer function through various numerical experiments and a synthetic frequency-domain full-wave inversion. We also compare the effectiveness of this curved-ray transfer function to a quasi-straight-ray transfer function. The inversion demonstrates the positive effect the transfer functions have on recovering conductivity and also that they are effective even when there are sharp velocity contrasts.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...