ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-05-30
    Description: While the Atlantic Ocean is ventilated by high-latitude deep water formation and exhibits a pole-to-pole overturning circulation, the Pacific Ocean does not. This asymmetric global overturning pattern has persisted for the past 2–3 million years, with evidence for different ventilation modes in the deeper past. In the current climate, the Atlantic-Pacific asymmetry occurs because the Atlantic is more saline, enabling deep convection. To what extent the salinity contrast between the two basins is dominated by atmospheric processes (larger net evaporation over the Atlantic) or oceanic processes (salinity transport into the Atlantic) remains an outstanding question. Numerical simulations have provided support for both mechanisms; observations of the present climate support a strong role for atmospheric processes as well as some modulation by oceanic processes. A major avenue for future work is the quantification of the various processes at play to identify which mechanisms are primary in different climate states.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Paleoceanography 30 (2015): 353–368, doi:10.1002/2014PA002667.
    Description: Approximately synchronous with the onset of Heinrich Stadial 1 (HS1), δ13C decreased throughout most of the upper (~1000–2500 m) Atlantic, and at some deeper North Atlantic sites. This early deglacial δ13C decrease has been alternatively attributed to a reduced fraction of high-δ13C North Atlantic Deep Water (NADW) or to a decrease in the NADW δ13C source value. Here we present new benthic δ18O and δ13C records from three relatively shallow (~1450–1650 m) subpolar Northeast Atlantic cores. With published data from other cores, these data form a depth transect (~1200–3900 m) in the subpolar Northeast Atlantic. We compare Last Glacial Maximum (LGM) and HS1 data from this transect with data from a depth transect of cores from the Brazil Margin. The largest LGM-to-HS1 decreases in both benthic δ13C and δ18O occurred in upper waters containing the highest NADW fraction during the LGM. We show that the δ13C decrease can be explained entirely by a lower NADW δ13C source value, entirely by a decrease in the proportion of NADW relative to Southern Ocean Water, or by a combination of these mechanisms. However, building on insights from model simulations, we hypothesize that reduced ventilation due to a weakened but still active Atlantic Meridional Overturning Circulation also contributed to the low δ13C values in the upper North Atlantic. We suggest that the benthic δ18O gradients above ~2300 m at both core transects indicate the depth to which heat and North Atlantic deglacial freshwater had mixed into the subsurface ocean by early HS1.
    Description: The work was supported by NSF grants OCE13-35191, OCE07-50880, and OCE05-84911 to the Woods Hole Oceanographic Institution.
    Keywords: Heinrich Stadial 1 ; Deglacial d13C minimum ; Atlantic Circulation ; Benthic d18O ; Benthic d13C
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Costa, K. M., Hayes, C. T., Anderson, R. F., Pavia, F. J., Bausch, A., Deng, F., Dutay, J., Geibert, W., Heinze, C., Henderson, G., Hillaire-Marcel, C., Hoffmann, S., Jaccard, S. L., Jacobel, A. W., Kienast, S. S., Kipp, L., Lerner, P., Lippold, J., Lund, D., Marcantonio, F., McGee, D., McManus, J. F., Mekik, F., Middleton, J. L., Missiaen, L., Not, C., Pichat, S., Robinson, L. F., Rowland, G. H., Roy-Barman, M., Alessandro, Torfstein, A., Winckler, G., & Zhou, Y. 230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean. Paleoceanography and Paleoclimatology, 35(2), (2020): e2019PA003820, doi:10.1029/2019PA003820.
    Description: 230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of 230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of 230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of 230Th as a constant flux proxy. Anomalous 230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (〉1,000 m water depth).
    Description: We thank Zanna Chase and one anonymous reviewer for valuable feedback. K. M. C. was supported by a Postdoctoral Scholarship at WHOI. L. M. acknowledges funding from the Australian Research Council grant DP180100048. The contribution of C. T. H., J. F. M., and R. F. A. were supported in part by the U.S. National Science Foundation (US‐NSF). G. H. R. was supported by the Natural Environment Research Council (grant NE/L002434/1). S. L. J. acknowledges support from the Swiss National Science Foundation (grants PP002P2_144811 and PP00P2_172915). This study was supported by the Past Global Changes (PAGES) project, which in turn received support from the Swiss Academy of Sciences and the US‐NSF. This work grew out of a 2018 workshop in Aix‐Marseille, France, funded by PAGES, GEOTRACES, SCOR, US‐NSF, Aix‐Marseille Université, and John Cantle Scientific. All data are publicly available as supporting information to this document and on the National Center for Environmental Information (NCEI) at https://www.ncdc.noaa.gov/paleo/study/28791.
    Keywords: Thorium ; Sediment flux ; Holocene ; LGM ; GEOTRACES
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...