ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 23 (1992), S. 201-235 
    ISSN: 0066-4162
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 20 (1997), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Disease is an integral element of agricultural and natural systems, but the roles pathogens play in determining ecosystem response to elevated CO2 have rarely been examined. To investigate whether disease can alter the response of plants to CO2, we examined the effects of doubled CO2 (∼700 μmol mol−1) on Avena sativa infected with barley yellow dwarf virus (BYDV), a common pathogen of cereals and grasses. Oats infected with BYDV showed a significantly greater biomass response to CO2 enrichment than did healthy plants. Root mass of diseased plants increased by 37–60% with CO2 enrichment, but was largely unaffected in healthy plants. CO2 enrichment increased midday leaf-level photosynthesis and instantaneous water use efficiency by 34 and 93% in healthy plants and by 48 and 174% in infected plants. Foliar carbohydrates increased with both CO2 enrichment and BYDV infection, but the two factors affected individual pools dissimilarly. CO2 enrichment may alter the epidemiology of BYDV by increasing the persistence of infected plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 18 (1995), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Increased atmospheric CO2 often but not always leads to large decreases in leaf conductance. Decreased leaf conductance has important implications for a number of components of CO2 responses, from the plant to the global scale. All of the factors that are sensitive to a change in soil moisture, either amount or timing, may be affected by increased CO2. The list of potentially sensitive processes includes soil evaporation, run-off, decomposition, and physiological adjustments of plants, as well as factors such as canopy development and the composition of the plant and microbial communities. Experimental evidence concerning ecosystem-scale consequences of the effects of CO2 on water use is only beginning to accumulate, but the initial indication is that, in water-limited areas, the effects of CO2-induced changes in leaf conductance are comparable in importance to those of CO,2-induced changes in photosynthesis.Above the leaf scale, a number of processes interact to modulate the response of canopy or regional evapotran-spiration to increased CO2. While some components of these processes tend to amplify the sensitivity of evapo-transpiration to altered leaf conductance, the most likely overall pattern is one in which the responses of canopy and regional evapotranspiration are substantially smaller than the responses of canopy conductance. The effects of increased CO2 on canopy evapotranspiration are likely to be smallest in aerodynamically smooth canopies with high leaf conductances. Under these circumstances, which are largely restricted to agriculture, decreases in evapotranspiration may be only one-fourth as large as decreases in canopy conductance.Decreased canopy conductances over large regions may lead to altered climate, including increased temperature and decreased precipitation. The simulation experiments to date predict small effects globally, but these could be important regionally, especially in combination with radiative (greenhouse) effects of increased CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 17 (1994), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: At elevated atmospheric CO2 concentrations ([CO2]a), photosynthetic capacity (Amax) and root fraction (ηR, the ratio of root to plant dry mass) increased in some studies and decreased in others. Here, we have explored possible causes of this, focusing on the relative magnitudes of the effects of elevated [CO2]a on specific leaf (nm) and plant (np) nitrogen concentrations, leaf mass per unit area (h), and plant nitrogen productivity (α). In our survey of 39 studies with 35 species, we found that elevated [CO2]a led to decreased nm and np in all the studies and to increased h and α in most of the studies. The magnitudes of these changes varied with species and with experimental conditions.Based on a model that integrated [CO2]a-induced changes in leaf nitrogen into a biochemically based model of leaf photosynthesis, we predicted that, to a first approximation, photosynthesis will be upregulated (Amax will increase) when growth at increased [CO2]a leads to increases in h that are larger than decreases in nm. Photosynthesis will be downregulated (Amax will decrease) when increases in h are smaller than decreases in nm. The model suggests that photosynthetic capacity increases at elevated [CO2]a only when additional leaf mesophyll more than compensates the effects of nitrogen dilution.We considered two kinds of regulatory paradigms that could lead to varying responses of ηR to elevated [CO2]a, and compared the predictions of each with the data. A simple static model based on the functional balance concept predicts that ηR should increase when neither np nor h is very responsive to elevated [CO2]a. The quantitative and qualitative agreement of the predictions with data from the literature, however, is poor. A model that predicts ηR from the relative sensitivities of photosynthesis and relative growth rate to elevated [CO2]a corresponds much more closely to the observations. In general, root fraction increases if the response of photosynthesis to [CO2]a is greater than that of relative growth rate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 14 (1991), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Sunflower plants (Helianthus annuus L., cv. CGL 208) were field-grown in adjacent plots of varying resource availability. Control plants received irrigation (on a 4–5 d interval) and high levels of fertilizer nitrogen. Nutrient-stress (N-stress) plants received control levels of irrigation but no nutrient amendments and were determined to be nitrogen-limited. Water-stress (H2O-stress) plants received control levels of fertilizer nitrogen, but no irrigation after approximately 6 weeks of plant growth. Both stress treatments reduced maximum and diurnal net photosynthesis (A) but resulted in different physiological or biochemical adjustments that tended to maintain or increase A per unit of resource (nitrogen or water) in shortest supply while decreasing the ratio of A per unit of abundant resource. Nutrient-stress reduced total foliar nitrogen, foliar chlorophyll, and initial and total RuBPCase activities, thereby enhancing or preserving photosynthetic nitrogen-use efficiency (NUE), defined as the maximum A observed per unit of leaf nitrogen, relative to the control and H2O-stress treatments. In addition, N-stress reduced photosynthetic water-use efficiency (WUE), defined as the ratio of A to stomatal conductance to water vapour (g). The slope of A versus g increased with H2O-stress. In addition, sunflower plants responded to H2O-stress by accumulating foliar glucose and sucrose and by exhibiting diurnal leaf wilting, which presumably provided additional improvements in photosynthetic WUE through osmoregulation and reduction of midday radiation interception respectively. Photosynthetic NUE was decreased by H2O-stress in that control levels of total nitrogen, foliar chlorophyll, and RuBPCase activities were maintained even after mean diurnal levels of A had fallen to less than 50% of the control level. We conclude that field-grown sunflower manages a trade-off between photosynthetic WUE and NUE, increasing use efficiency of the scarce resource while decreasing use efficiency of the abundant resource.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Keywords: Key words N mineralization ; Elevated CO2 ; Annual grasslands ; Soil moisture
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Nitrogen (N) limits plant growth in many terrestrial ecosystems, potentially constraining terrestrial ecosystem response to elevated CO2. In this study, elevated CO2 stimulated gross N mineralization and plant N uptake in two annual grasslands. In contrast to other studies that have invoked increased C input to soil as the mechanism altering soil N cycling in response to elevated CO2, increased soil moisture, due to decreased plant transpiration in elevated CO2, best explains the changes we observed. This study suggests that atmospheric CO2 concentration may influence ecosystem biogeochemistry through plant control of soil moisture.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Keywords: Key words Elevated CO2 ; Soil food web ; Community structure ; Nematodes ; Protozoa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  We measured soil bacteria, fungi, protozoa, nematodes, and biological activity in serpentine and sandstone annual grasslands after 4 years of exposure to elevated atmospheric CO2. Measurements were made during the early part of the season, when plants were in vegetative growth, and later in the season, when plants were approaching their maximum biomass. In general, under ambient CO2, bacterial biomass, total protozoan numbers, and numbers of bactivorous nematodes were similar in the two grasslands. Active and total fungal biomasses were higher on the more productive sandstone grassland compared to the serpentine. However, serpentine soils contained nearly twice the number of fungivorous nematodes compared to the sandstone, perhaps explaining the lower standing crop of fungal biomass in the serpentine and suggesting higher rates of energy flow through the fungal-based soil food web. Furthermore, root biomass in the surface soils of these grasslands is comparable, but the serpentine contains 6 times more phytophagous nematodes compared to the sandstone, indicating greater below-ground grazing pressure on plants in stressful serpentine soils. Elevated CO2 increased the biomass of active fungi and the numbers of flagellates in both grasslands during the early part of the season and increased the number of phytophagous nematodes in the serpentine. Elevated CO2 had no effect on the total numbers of bactivorous or fungivorous nematodes, but decreased the diversity of the nematode assemblage in the serpentine at both sampling dates. Excepting this reduction in nematode diversity, the effects of elevated CO2 disappeared later in the season as plants approached their maximum biomass. Elevated CO2 had no effect on total and active bacterial biomass, total fungal biomass, or the total numbers of amoebae and ciliates in either grassland during either sampling period. However, soil metabolic activity was higher in the sandstone grassland in the early season under elevated CO2, and elevated CO2 altered the patterns of use of individual carbon substrates in both grasslands at this time. Rates of substrate use were also significantly higher in the sandstone, indicating increased bacterial metabolic activity. These changes in soil microbiota are likely due to an increase in the flux of carbon from roots to soil in elevated CO2, as has been previously reported for these grasslands. Results presented here suggest that some of the carbon distributed below ground in response to elevated CO2 affects the soil microbial food web, but that these effects may be more pronounced during the early part of the growing season.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 72 (1987), S. 449-456 
    ISSN: 1432-1939
    Keywords: Piper auritum ; Piper hispidum ; Tropics ; Photosynthesis ; Dark respiration ; Forest gap
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Piper auritum (H.B. & K.), a pioneer tree restricted to open sites and Piper hispidum (Swartz), a shrub common in sites ranging from recent clearings to shaded understory, both adjust photosynthetic characteristics in response to light availability during growth. The sensitivity of photosynthetic capacity to light availability during growth was indistinguishable for the two species growing in their natural habitat. Photosynthetic capacity was strongly correlated with leaf nitrogen in both species, and the relationship was similar between species. Dark respiration and leaf specific mass were more sensitive to light during growth in P. hispidum, the species with the broad habitat ange, than in P. auritum. In general, similarities between the species were more striking than differences between them. The differences in dark respiration could have important implications for carbon balance. The difference in the responsiveness of leaf specific mass to light indicates that the broad-ranging species maintains access to modes of response little utilized by the open-site specialist. We did not and, in the gas exchange characteristics, any evidence that the open site specialist is better suited than the generalist to high-light sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Keywords: Water-use efficiency ; Nutrient-use efficiency ; Photosynthesis ; Human impact ; 13C/12C ratios
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Leaf carbon isotope ratios and leaf mineral composition (Ca, K, Mg, Mn, N, and P) were measured on the dominant species along an irradiance cline in a subtropical monsoon forest of southern China. This irradiance cline resulted from disturbance caused by fuel-harvesting. Leaf carbon isotope ratios increased from undisturbed to disturbed sites for all species, indicating that leaf intercellular CO2 concentrations decreased and leaf water use efficiencies increased along this cline. Nitrogen and magnesium levels were lower in leaves of species on the disturbed sites, but there were no clear patterns for calcium, potassium, phosphorus or manganese.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1939
    Keywords: Tropical forests-C3-C4-CAM ; Intercellular CO2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Carbon isotope ratios were used to survey the distribution of photosynthetic pathways among taxa, the relationship between photosynthetic pathway and habitat light levels, and the relationship between intercellular CO2 levels of C3 plants and habitat light levels within a subtropical monsoon forest in southern China. Of 128 species, most (94) possessed the C3 photosynthetic pathway; 33 species possessed the C4 pathway and all of these were restricted to high light locations. There was one epiphytic CAM species. The C3 species were classified as occurring in open, intermediate, and closed canopy sites. Among C3 species, carbon isotope ratios tended to become more negative with decreasing light availability in the habitat.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...