ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: The potential of a continuous wave cavity ringdown spectrometer for monitoring the isotope ratio 13CO2/12CO2 and the partial pressure pCO2 of CO2 dissolved in water was thoroughly analyzed by quantitative measurements. Running calibration gas standards under typical operation conditions, a relative accuracy of D(d13C[CO2]) = ±0.1‰ with 120 min averaging time has been demonstrated. Absolute uncertainties were determined to be D(d13C[CO2]) = ±0.2‰ and D(xCO2) = ±0.5 ppmv. No principle problems were encountered when using the instrument in combination with a water-air equilibration setup. By contrast, when performing measurements of CO2 in gas matrices with a composition different from that of ambient air, pressure broadening linewidth effects induced significant errors in both d13C(CO2) and xCO2 values. These effects, which compromise the accessible accuracy in environmental studies, can be quantitatively taken into account by using a spectroscopically based correction procedure. Relying on linewidth analysis, the instrument was shown to be capable of continuous and simultaneous measurement of d13C(CO2), pCO2, as well as water content and O2 supersaturation, and thus holds the potential for online monitoring of these quantities aboard research vessels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-04
    Description: Sub-micron marine aerosol particles (PM1) were collected over the period 22 June–21 July 2011 during the RV MARIA S. MERIAN cruise MSM 18/3, which travelled from the Cape Verdean island of São Vicente to Gabon, in the process crossing the tropical Atlantic Ocean with its equatorial upwelling regime. According to air mass origin and the chemical composition of the sampled aerosol particles, three main regimes could be established. Aerosol particles in the first part of the cruise were mainly of marine origin (Region I). In the second part of the cruise, marine influences mixed with increasing influence from biomass burning (Region II). In the final part of the cruise, which approached the African mainland, the biomass burning influence became dominant (Region III). Generally, aerosol particles were dominated by sulfate (caverage = 2.0 μg m−3) and ammonium ions (caverage = 0.7 μg m−3), which were well-correlated and increased slightly over the duration of the cruise. High concentrations of water-insoluble organic carbon (WISOC; caverage = 0.4 μg m−3) were found, most likely as a result of the high oceanic productivity in this region. Water-soluble organic carbon (WSOC) concentrations increased from 0.26 μg m−3 in Region I to 2.3 μg m−3 in Region III, most likely as a result of biomass burning influences. The major organic aerosol constituents were oxalic acid, methanesulfonic acid (MSA), and aliphatic amines. MSA concentrations were quite constant during the cruise (caverage = 42 ng m−3). Aliphatic amines were most abundant in Region I, with concentrations of ~ 20 ng m−3. Oxalic acid showed the opposite trend, with average concentrations of 12 ng m−3 in Region I and 158 ng m−3 in Region III. The α-dicarbonyl compounds glyoxal and methylglyoxal were detected in the aerosol particles in the low ng m−3 range and were closely correlated with oxalic acid. MSA and aliphatic amines arise from biogenic marine sources, whereas oxalic acid and the α-dicarbonyl compounds were attributed to biomass burning. Concentrations of n-alkanes increased from 0.8 to 4.7 ng m−3 over the duration of the cruise. PAHs and hopanes were abundant only in Region III (caverage of PAHs = 0.13 ng m−3; caverage of hopanes = 0.19 ng m−3). Levoglucosan was identified in several samples obtained in Region III, with caverage = 1.9 ng m−3, which points to (aged) biomass burning influences. The organic compounds quantified in this study could explain 8.3 % of WSOC in Regions I, where aliphatic amines and MSA dominated, 3.7 % of WSOC in Region II and 2.5 % of WSOC in Region III, where oxalic acid dominated.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: The role of the global surface ocean as a source and sink for atmospheric carbon dioxide and the flux strengths between the ocean and the atmosphere can be quantified by measuring the fugacity of CO2 (ƒCO2) as well as the dissolved inorganic carbon (DIC) concentration and its isotopic composition in surface seawater. In this work, the potential of continuous wave cavity ringdown spectroscopy (cw-CRDS) for autonomous underway measurements of ƒCO2 and the stable carbon isotope ratio of DIC [δ13C(DIC)] is explored. For the first time, by using a conventional air-sea equilibrator setup, both quantities were continuously and simultaneously recorded during a field deployment on two research cruises following meridional transects across the Atlantic Ocean (Bremerhaven, Germany–Punta Arenas, Chile). Data are compared against reference measurements by an established underway CO2 monitoring system and isotope ratio mass spectrometric analysis of individual water samples. Agreement within ΔƒCO2 = 0.35 μatm for atmospheric and ΔƒCO2 = 2.5 μatm and Δδ13C(DIC) =0.33‰ for seawater measurements have been achieved. Whereas “calibration-free” ƒCO2 monitoring is feasible, the measurement of accurate isotope ratios relies on running reference standards on a daily basis. Overall, the installed CRDS/equilibrator system was shown to be capable of reliable online monitoring of ƒCO2, equilibrium δ13C(CO2), δ13C(DIC), and pO2 aboard moving research vessels, thus making possible corresponding measurements with high spatial and temporal resolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: In this article, we evaluate the performance of a commercially available lifetime-based optode and compare it with data obtained by other methods. We performed a set of 10 different tests, including targeted laboratory evaluations and field studies, covering a wide range of situations from shallow coastal waters and wastewater treatment plants to abyssal depths. Our principal conclusion is that, owing to high accuracy (± 2 µM), long-term stability (more than 20 months), lack of pressure hysteresis, and limited cross-sensitivity, this method is overall more suitable for oxygen monitoring than other methods.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Society of Limnology and Oceanography
    In:  Limnology and Oceanography: Methods, 10 . pp. 921-933.
    Publication Date: 2019-09-23
    Description: We present a laboratory calibration setup for the individual multi-point calibration of oxygen sensors. It is based on the electrochemical generation of oxygen in an electrolytic carrier solution. Under thorough control of the conditions, i.e., temperature, carrier solution flow rate, and electrolytic current, the amount of oxygen is strictly given by Faraday's laws and can be controlled to within ± 0.5 μmol L–1 (2 SD). Whereas Winkler samples can be taken for referencing with a reproducibility between triplicates of 0.8 μmol L–1 (2 SD), the calibration setup can provide a Winkler-free way of referencing with an accuracy of ± 1.2 μmol L–1 (2 SD). Thus calibrated oxygen optodes have been deployed in the Southern Ocean and the Eastern Tropical Atlantic both in profiling and underway mode and confirm the validity of the laboratory calibrations to within few μmol L–1. In two cases, the optodes drifted between deployments, which was easily identified using the calibration setup. The electrochemical calibration setup may thus facilitate accurate oxygen measurements on a large scale, and its small size makes it possible to configure as a mobile, sea-going, Winkler-free system for oxygen sensor calibrations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Society of Limnology and Oceanography
    In:  Limnology and Oceanography: Methods, 2 . pp. 126-136.
    Publication Date: 2018-08-14
    Description: A newly designed system for high quality discrete spectrophotometric measurements of pHT using a low-cost CCD detector is described. Considerations and requirements for the choice of spectrophotometers with a CCD detector instead of scanning spectrophotometers with photomultiplier detector are elucidated. The presented system is evaluated in the laboratory for system accuracy and short-term precision and at-sea for long-term precision and at-sea capability. Derived system characteristics are a (1s) short-term precision of ± 0.0012 pH units and a (1s) long-term precision at-sea of ± 0.0032 pH units based on Certified Reference Materials (CRM). Such long-term precision is equivalent to a deviation of ± 1.1 to 2.2 µmol kg-1 in total dissolved inorganic carbon (TCO2) and ± 1.4 to 2.1 µmol kg-1 in total alkalinity (TA), depending on temperature and the TCO2/TA ratio. Over-determination of the CO2 system (TCO2, TA, pHT) from surface-to-deep water profiles support the accuracy and precision assessment in comparison to earlier data. With careful design and testing low-cost CCD spectrophotometers can be used for high accuracy pH-measurements.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Springer
    In:  In: Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis. , ed. by Liu, K. K., Atkinson, L., Quiñones, R. and Talaue-McManus, L. Springer, New York, USA, pp. 450-453.
    Publication Date: 2012-02-23
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: Ocean acidification is elicited by anthropogenic carbon dioxide emissions and resulting oceanic uptake of excess CO2 and might constitute an abiotic stressor powerful enough to alter marine ecosystem structures. For surface waters in gas-exchange equilibrium with the atmosphere, models suggest increases in CO2 partial pressure (pCO2) from current values of ca. 390 μatm to ca. 700–1,000 μatm by the end of the century. However, in typically unequilibrated coastal hypoxic regions, much higher pCO2 values can be expected, as heterotrophic degradation of organic material is necessarily related to the production of CO2 (i.e., dissolved inorganic carbon). Here, we provide data and estimates that, even under current conditions, maximum pCO2 values of 1,700–3,200 μatm can easily be reached when all oxygen is consumed at salinities between 35 and 20, respectively. Due to the nonlinear nature of the carbonate system, the approximate doubling of seawater pCO2 in surface waters due to ocean acidification will most strongly affect coastal hypoxic zones as pCO2 during hypoxia will increase proportionally: we calculate maximum pCO2 values of ca. 4,500 μatm at a salinity of 20 (T = 10 °C) and ca. 3,400 μatm at a salinity of 35 (T = 10 °C) when all oxygen is consumed. Upwelling processes can bring these CO2-enriched waters in contact with shallow water ecosystems and may then affect species performance there as well. We conclude that (1) combined stressor experiments (pCO2 and pO2) are largely missing at the moment and that (2) coastal ocean acidification experimental designs need to be closely adjusted to carbonate system variability within the specific habitat. In general, the worldwide spread of coastal hypoxic zones also simultaneously is a spread of CO2-enriched zones. The magnitude of expected changes in pCO2 in these regions indicates that coastal systems may be more endangered by future global climate change than previously thought.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Society of Limnology and Oceanography
    In:  Limnology and Oceanography: Methods, 12 . pp. 617-636.
    Publication Date: 2019-09-23
    Description: The time response behavior of Aanderaa optodes model 3830, 4330, and 4330F, as well as a Sea-Bird SBE63 optode and a JFE Alec Co. Rinko dissolved oxygen sensor was analyzed both in the laboratory and in the field. The main factor for the time response is the dynamic regime, i.e., the water flow around the sensor that influences the boundary layer’s dynamics. Response times can be drastically reduced if the sensors are pumped. Laboratory experiments under different dynamic conditions showed a close to linear relation between response time and temperature. Application of a diffusion model including a stagnant boundary layer revealed that molecular diffusion determines the temperature behavior, and that the boundary layer thickness was temperature independent. Moreover, field experiments matched the laboratory findings, with the profiling speed and mode of attachment being of prime importance. The time response was characterized for typical deployments on shipboard CTDs, gliders, and floats, and tools are presented to predict the response time as well as to quantify the effect on the data for a given water mass profile. Finally, the problem of inverse filtering optode data to recover some of the information lost by their time response is addressed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-19
    Description: Global population projections foresee the biggest increase to occur in Africa with most of the available uncultivated land to ensure food security remaining on the continent. Simultaneously, greenhouse gas emissions are expected to rise due to ongoing land use change, industrialisation, and transport amongst other reasons with Africa becoming a major emitter of greenhouse gases globally. However, distinct knowledge on greenhouse gas emissions sources and sinks as well as their variability remains largely unknown caused by its vast size and diversity and an according lack of observations across the continent. Thus, an environmental research infrastructure—as being setup in other regions—is more needed than ever. Here, we present the results of a design study that developed a blueprint for establishing such an environmental research infrastructure in Africa. The blueprint comprises an inventory of already existing observations, the spatial disaggregation of locations that will enable to reduce the uncertainty in climate forcing’s in Africa and globally as well as an overall estimated cost for such an endeavour of about 550 M€ over the next 30 years. We further highlight the importance of the development of an e-infrastructure, the necessity for capacity development and the inclusion of all stakeholders to ensure African ownership.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...