ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-03
    Description: Background: Recent years, the incidence and mortality of fungal infection has been on the rise in the patients with hematologic malignancies. This is mainly associated with antifungal resistance and the restricted number of available antifungal drugs. Candida species is one of the most prevalent pathogens in these immunodeficient patients. However, the study of azole resistance mechanisms of Candida has focused on C.albicans, C.glabrata, C.tropicalis. And few studies talked about resistance mechanisms of C.krusei, especially resistant to itraconazole. It was reported that the mutation or overexpression of 14¦Á-demethylases (encoded by ERG11) and upregulation of efflux transporters (encoded by ABC1 and ABC2) may be involved in azole resistance of C.krusei. Here, The purpose of the present study is to preliminarily explore the main molecular mechanisms responsible for Candida krusei clinical isolates to itraconazole, and may provide new sight into fungal infection therapy. Methods: The 14¦Á-demethylases encoded by ERG11 gene in the 16 C.krusei clinical isolates were amplified by polymerase chain reaction (PCR), and their nucleotide sequences were determined to detect point mutations. Meanwhile, ERG11 and efflux transporters (ABC1 and ABC2) genes were determined by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) for their expression in itraconazole-resistant (R), itraconazole-susceptible dose dependent (SDD) and itraconazole- susceptible (S) C.krusei at the mRNA level. Results: We found 7-point mutations in ERG11 gene of all the C.krusei clinical isolates, including 6 synonymous mutations and 1 missense mutation (C44T). However, the missense mutation was found in the three groups. The mRNA levels of ERG11 gene in itraconazole-resistant isolates showed higher expression compared with itraconazole-susceptible dose dependent and itraconazole- susceptible ones (P=0.015 and P=0.002 respectively). ABC2 gene mRNA levels in itraconazole-resistant group was significantly higher than the other two groups, and the levels of their expression in the isolates appeared to increase with the decrease of susceptibility to itraconazole (P=0.007 in SDD compared with S, P=0.016 in SDD with R, and P
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...