ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-03
    Description: Chronic Lymphocytic Leukemia (CLL) is characterized by accumulation of clonally expanded population of CD5+ CD19+ B lymphocytes in peripheral blood and secondary lymphoid organs, with a majority of circulating cells in a non-dividing resting stage. However CLL is no longer considered a static disease that results from simple accumulation of long-lived lymphocytes, but rather, is a dynamic process with a birth rate of about 0.1-2% of the entire CLL clone per day. The Eµ-Tcl1 mouse serves as an excellent model for the development of CLL as they develop a CLL like disease by 9-13 months of age, due to overexpression of the oncogene, T cell Leukemia 1 (Tcl1), in B cells through the Ig VH promoter and Eµ enhancer (Bichi et al. PNAS. 2002). In an adoptive transfer model, intravenous or intraperitoneal injection of primary CD5+ CD19+ CLL cells from the Eµ-Tcl1 CLL mouse into recipient syngeneic mice leads to development of a CLL like disease within 3-5 weeks of transfer. We have characterized the growth of CLL cells in these mice by periodic submandibular bleeding, ultrasonography of spleen and flow cytometry. We find that Eµ-Tcl1 CLL cells express more Prostate apoptosis response-4 (Par-4), a pro-apoptotic tumor suppressor protein, than normal B-1 or B-2 cells in mice. Par-4 is silenced by promoter methylation in more than 30% of all cancers. Par-4 has been shown to be secreted and to induce apoptosis selectively in various types of cancer cells but not in normal cells. Although we find that Eµ-Tcl1 CLL cells constitutively secrete Par-4, they are resistant to Par-4 mediated apoptosis. We show that CLL cells have constitutively active B-cell receptor signaling and that inhibition of BCR signaling with FDA approved drugs (i.e. Dasatinib, Ibrutinib, and Fostamatinib) causes a decrease in Par-4 protein and mRNA levels and increases apoptosis. Interestingly, systemic Par-4 appears to inhibit CLL growth in vivo, since adoptively transferred Eµ-Tcl1 CLL cells grew better in Par-4 null mice, despite excellent Par-4 expression and secretion by the transferred cells. Thus there were three times more CLL cells in the bone marrow and twice as many in the spleens of Par-4 null mice compared to their wild type counterparts. We conclude that even though Par-4 is pro-apoptotic in the CLL microenvironment, intracellular Par-4 is either rendered inactive or is potentially pro-survival in Eµ-Tcl1 CLL cells. (Supported in part by NIH grants) Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-02
    Description: The most common human leukemia is B-cell chronic lymphocytic leukemia (B-CLL), which is characterized by a progressive accumulation of abnormal B-lymphocytes in blood, bone marrow and secondary lymphoid organs. Typically disease progression is slow, but as the number of leukemic cells increases, they interfere with the production of other important blood cells, causing the patients to be in an immunosuppressive state. To study the basis of this immunoregulation, we used cells from the transgenic Eμ-Tcl1 mouse, which spontaneously develop B-CLL due to a B-cell specific expression of the oncogene, Tcl1. Previously we showed that Eμ-Tcl1 CLL cells constitutively produce an anti-inflammatory cytokine, IL-10. Here we studied the role of IL-10 in CLL cell survival in vitro and the development of CLL in vivo. We found that neutralization of IL-I0 using anti-IL-10 antibodies or blocking the IL-10 receptor (IL-10R) using anti-IL-10R antibodies did not affect the survival of CLL cells in vitro. On the other hand, adoptively transferred Eμ-Tcl1 cells grew at a slower rate in IL-10R KO mice vs. wild type (WT) mice. There was a significant reduction in CLL cell engraftment in the spleen, bone marrow, peritoneal cavity and liver of the IL-10R KO compared to WT mice. Further studies revealed that IL-10 could be playing a role in the tumor microenvironment possibly by affecting anti-tumor immunity. This was seen by a reduction in the activation of CD8+ T cells as well as a significantly lower production of IFN-γ by CD4+ T cells purified from CLL-injected WT mice compared to those purified from CLL-injected IL-10R KO mice. These studies demonstrate that CLL cells suppress host anti-tumor immunity via IL-10 production. This led us to investigate possible mechanisms by which IL-10 is produced. We found a novel role of B-cell receptor (BCR) signaling pathway in constitutive IL-10 secretion. Inhibition of Src or Syk family kinases reduces the constitutive IL-10 production by Eμ-Tcl1 cells in a dose dependent manner. In addition, we found that Eμ-Tcl1 CLL cells exhibit clonal variation in their IL-10 production in response to BCR cross-linking. Further studies are being performed to understand the mechanisms by which BCR signaling affects IL-10 production. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-28
    Description: Key Points CLL cells overexpress a well-defined tumor suppressor Par-4, which promotes malignant B-CLL growth and is regulated through BCR signaling. Robust regulation of cell-cycle modulator p21/WAF1 by Par-4 in CLL cells.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...