ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-11-13
    Description: Whole exome sequencing analyses are increasingly performed on patients presenting with suspected inherited disease but lacking classical mutations linked to presented phenotypes. Using whole-exome sequencing in SBDS-negative Shwachman-Diamond Syndrome (SDS) families, we recently identified three independent patients, each of whom carried a heterozygous de novo missense variant of SRP54 (encoding signal recognition particle 54 kDa). The SRP54 protein is a key component of the ribonucleoprotein complex that mediates the co-translational targeting of secretory and membrane proteins to the endoplasmic reticulum (ER). Whilst two of the identified patients were carrying nucleotide transversion in SRP54 (p.T115A and p.G226E), which manifested in typical SDS features like neutropenia and exocrine pancreatic insufficiency, the third patient was carrying a nucleotide deletion (p.T117Δ), which only manifested in mild neutropenia without additional SDS features (Carapito et al. 2017, JCI). Here, we describe a zebrafish knock-out (KO) mutant as the very first transgenic in vivo model of SRP54 deficiency, translate our previous findings into living organisms and propose disease-driving mechanisms. We show that homozygous srp54 mutant zebrafish are suffering not only from severe neutropenia as shown by flow cytometry and Whole-Mount-In-Situ Hybridization (WISH), but also from gross developmental defects leading to early embryonic lethality. In fact, srp54-/- zebrafish did not survive more than 72 hours post fertilization, indicating that complete loss of Srp54 is not compatible with life. Injection with wild-type human SRP54 mRNA induced transient restoration of SRP54 protein expression and slightly enhanced the survival of the homozygous mutants. However, long-term viability could not be restored, revealing that srp54 is not only critically required during early embryogenesis but also at later stages of development. Heterozygous siblings on the other hand are viable and display only mild neutropenia but no pancreas defects. Interestingly however, injection of mutant mRNAs of human SRP54 (p.T115A, p.T117Δ, p.226E) into heterozygous srp54 KO mutants aggravated the phenotype inducing more profound neutropenia and pancreas changes similar to those observed in classical SDS patients. Of note, these effects were more severe for the transversions p.T115A and p.G226E. Mutation p.T117Δ only caused a minor reduction in the number of neutrophils, without affecting the pancreas. To further investigate SRP54 driven neutrophil defects, we used lentiviral transduction to exogenously express human SRP54 mutant variants in promyelocytic HL-60 cells. When stimulating these cells to differentiate by ATRA treatment, we found significantly impaired morphologic differentiation and CD11b surface induction compared to control cells. The severity of these effects was again specific to the three different identified mutations, with p.T115A and p.G226E being more severe than p.T117Δ. These findings confirm the type-specific effects of SRP54 mutations and indicate that SRP54 defects interfere with neutrophil differentiation and thus ultimately lead to neutropenia. Collectively, we here describe a novel zebrafish disease model of SDS and congenital neutropenia founding on SRP54 as molecular driver. Our model demonstrates that at least one healthy allele of srp54 is pivotal for survival, which is in line with the findings in humans, where homozygous mutations in SRP54 have never been detected. We reveal that the phenotypic manifestation of heterozygous SRP54 mutations strongly depends on the type of mutation: while mutations likely causing a simple SRP54 loss of function (e.g. p.T117Δ) induce a rather mild phenotype characterized by moderate neutropenia only (analogous to the heterozygous fish mutant), more severe SDS-like phenotypes involve SRP54 mutations that exert dominant negative effects (e.g. p.T115A and p.G226E). Ultimately, we make use of the promyelocytic cell line HL-60 to propose neutrophil differentiation defects as the underlying cause of SRP54 driven neutropenia. At the time being, RNA sequencing and protein expression analyses are performed in our laboratory, which will add to the understanding of the mechanistical background of the neutrophilic differentiation blockage and eventually uncover novel treatment strategies for SRP54 deficiency. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-29
    Description: Patients with acute myeloid leukaemia (AML) often achieve remission but subsequently die of relapse driven by chemotherapy resistant leukemic stem cells (LSCs). To initiate and maintain cancer, LSCs must also escape immunosurveillance. However, in vivo studies on human LSCs largely disregard lymphocyte mediated anti-tumor immunity due to the use of immunocompromised mice. Here we investigate the immunosurveillance mediated by NKG2D, a danger detector expressed by cytotoxic lymphocytes such as natural killer (NK) cells that recognizes stress-induced ligands (NKG2DL) of the MIC and ULBP protein families on AML cells. Staining of n=175 de novo AML with antibodies against MICA, MICB and ULB2/5/6 or an NKG2D-Fc chimeric protein recognizing pan-NKG2DL expression revealed NKG2DL to heterogeneously express among leukemic cells of the same patient (Fig. 1a). As expected, NKG2DLpos AML cells were efficiently cleared by natural killer (NK) cells, while NKG2DLneg leukemic cells escaped NK cell lysis. Interestingly, these NKG2DLneg AML cells also showed immature morphology, enhanced in vitro clonogenicity (39±47 colonies vs. 1±4, p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-23
    Description: Heterozygous de novo missense variants of SRP54 were recently identified in patients with congenital neutropenia (CN), displaying symptoms overlapping with Shwachman-Diamond-Syndrome (SDS).1 Here, we investigate srp54 KO zebrafish as the first in vivo model of SRP54 deficiency. srp54-/- zebrafish are embryonically lethal and display, next to severe neutropenia, multi-systemic developmental defects. In contrast, srp54+/- zebrafish are viable, fertile and only show mild neutropenia. Interestingly, injection of human SRP54 mRNAs carrying mutations observed in patients (T115A, T117Δ and G226E) aggravated neutropenia and induced pancreatic defects in srp54+/- fish, mimicking the corresponding human clinical phenotypes. These data suggest that the variable phenotypes observed in patients may be due to mutation-specific dominant negative effects on the functionality of the residual wildtype SRP54 protein. Consistently, overexpression of mutated SRP54 also induced neutropenia in wildtype fish and impaired granulocytic maturation of human promyelocytic HL-60 cells as well as of healthy cord-blood derived CD34+ HSPCs. Mechanistically, srp54 mutant fish and human cells show impaired unconventional splicing of the transcription factor X-box binding protein 1 (Xbp1). Vice-versa, xbp1 morphants recapitulate phenotypes observed in srp54 deficiency and, importantly, injection of spliced, but not unspliced xbp1 mRNA rescues neutropenia in srp54+/- zebrafish. Together, these data indicate that SRP54 is critical for the development of various tissues, with neutrophils reacting most sensitively to SRP54 loss. The heterogenic phenotypes observed in patients, ranging from mild CN to SDS-like disease, may be due to different dominant negative effects of mutated SRP54 proteins on downstream XBP1 splicing, which represents a potential therapeutic target.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...