ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (6)
Collection
Publisher
Years
  • 1
    Publication Date: 2004-11-16
    Description: Despite recent advances in the treatment of multiple myeloma (MM), this disease remains incurable. Accumulating evidence suggest that the bone marrow (BM) microenvironment of MM plays a critical role in tumor growth, survival, and drug resistance. A key aspect of this tumor-supportive environment is elevated levels of cytokines and other soluble factors. Most prominent among these is IL-6, which acts as a survival factor for MM cells and promotes their proliferation, migration, and drug resistance. Other mediators also implicated in the disease are VEGF and TNFa. The p38 MAPK is activated by a multitude of signals, including pro-inflammatory cytokines (e.g., TNFa and IL-1ß) and environmental stress. Furthermore, p38 activation has been shown to be important for the synthesis and secretion of IL-6, VEGF, and TNFa. Consequently, inhibition of p38 is postulated to reduce the production of these factors implicated in MM and to have therapeutic benefit by suppressing the tumor-supportive state of the BM microenvironment. Here, we demonstrate that SCIO-469, a specific and potent inhibitor of p38a MAPK, strongly inhibits MM cell proliferation by affecting MM cells directly as well as the BM microenvironment. SCIO-469 directly inhibits MM cell proliferation in long term culture. Importantly, SCIO-469 potently inhibits IL-6 and VEGF secretion from BM stromal cells (BMSC). To examine the effect of inhibiting BMSC-derived factors important in MM, we measured MM cell proliferation using transwell plates that separate BMSC from MM cells via a porous membrane. In transwell plates containing only MM cells, MM cell proliferation was modest and was inhibited by SCIO-469. In contrast, the presence of BMSC in transwell inserts dramatically increased the proliferation of MM cells over the course of the study. This result suggests that factors (e.g., IL-6) secreted by BMSC greatly stimulate MM cell proliferation. When SCIO-469 was added to these transwell cultures containing BMSC, MM cell proliferation was inhibited significantly. Consistent with these results, we show that levels of IL-6 under these conditions mirror exactly the proliferation of MM cells; IL-6 level is high in vehicle-treated cultures and is suppressed in SCIO-469-treated cultures. Finally, in a mouse xenograft plasmacytoma model of MM, we show that p38 inhibition significantly inhibited the increase in MM tumor volume. Collectively, our data indicate that SCIO-469 is a suppressor of the BM microenvironment and an effective inhibitor of MM cell proliferation in vitro and in vivo. Since SCIO-469 also inhibits secretion of osteoclast-stimulating factors (RANKL, IL-11, and MIP1a) in the microenvironment, SCIO-469 may not only inhibit MM cell survival but may also alleviate bone-related pathologies (bone destruction and osteolytic lesions) commonly associated with MM. Therefore, SCIO-469 may offer great promise for an improved outcome for patients with MM.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-12-15
    Description: The myelodysplastic syndromes (MDSs) are collections of heterogeneous hematologic diseases characterized by refractory cytopenias as a result of ineffective hematopoiesis. Development of effective treatments has been impeded by limited insights into any unifying pathogenic pathways. We provide evidence that the p38 MAP kinase is constitutively activated or phosphorylated in MDS bone marrows. Such activation is uniformly observed in varied morphologic subtypes of low-risk MDS and correlates with enhanced apoptosis observed in MDS hematopoietic progenitors. Most importantly, pharmacologic inhibition of p38α by a novel small molecule inhibitor, SCIO-469, decreases apoptosis in MDS CD34+ progenitors and leads to dose-dependant increases in erythroid and myeloid colony formation. Down-regulation of the dominant p38α isoform by siRNA also leads to enhancement of hematopoiesis in MDS bone marrow progenitors in vitro. These data implicate p38 MAPK in the pathobiology of ineffective hematopoiesis in lowrisk MDS and provide a strong rationale for clinical investigation of SCIO-469 in MDS.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-11-16
    Description: Multiple myeloma (MM) is a plasma cell cancer characterized by the accumulation and clonal expansion of malignant cells in the bone marrow (BM). Recent findings indicate that adhesion of MM cells to BM stromal cells (BMSCs) protects MM cells from drug-induced apoptosis and leads to upregulation of interleukin-6 (IL-6), a cytokine that promotes MM cell growth and survival. However, the molecular mechanism that determines the adhesion of MM cells to BMSCs is relatively unclear. Here we show that SCIO-469, a potent and selective inhibitor of the p38a mitogen-activated protein kinase (MAPK), prevents TNFa-induced adhesion of MM cells to BMSCs. Interestingly, TNFa-induced expression of ICAM-1 and VCAM-1, molecules that have been reported to mediate cell-cell adhesion, is not affected by SCIO-469 treatment. In an effort to identify additional factors that may play a role in the adhesion of MM cells to BMSCs, we performed a DNA microarray experiment on BMSCs. Of the BMSC genes that were strongly upregulated by TNFa exposure and reversed by SCIO-469 treatment, a set of chemokines was most prominent. To determine whether these chemokines are important for MM adhesion to BMSCs, various chemokines (CCL2, CCL7, CCL8, CXCL1, CXCL3, CXCL6, CXCL10/IP-10, and CXCL11) were added together with SCIO-469 in the adhesion assays. We found that reintroduction of the chemokines CXCL10 and CCL8 reversed the inhibition of adhesion by SCIO-469. These results suggest that SCIO-469 inhibits TNFa-induced adhesion of MM cells to BMSCs by downregulating the chemokines CXCL10 and CCL8. Intriguingly, these two chemokines were also recently demonstrated to be involved in leukocyte adhesion to endothelial cells. Thus, chemokines, especially CXCL10 and CCL8, appear to have a general function of localizing blood cells to various sites within the body. Together, our findings demonstrate another potential therapeutic role for SCIO-469 in MM in addition to its role of inhibiting the production of growth factors such as IL-6 and VEGF in the MM bone marrow microenvironment.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-11-16
    Description: Progress in the development of more effective therapeutics for myelodysplastic syndrome (MDS) has been limited by the lack of targets critical to the pathobiology of the disease. Ineffective hematopoiesis in MDS is characterized by accelerated proliferation and premature apoptotic death of progenitors and their progeny that is potentiated by the local generation of inhibitory molecules, including TNFa, TGFß, FasL, and VEGF. To identify upstream regulatory signals that may coordinate activation of inhibitory molecules, we used an in vitro cell culture model incorporating a CD34+ MDS cell line isolated from a RAEB-t patient, normal bone marrow stromal cells (BMSC), and/ or bone marrow mononuclear cells (BMMNC) to determine effects of cell-cell interactions on secretion of inhibitory hematopoietic cytokines. The role of p38 MAP kinase, a regulatory kinase involved in the convergence of inhibitory cytokine activation and signaling, was evaluated in this interaction. We found that p38 MAPK is induced under basal culture conditions in the MDS cell line and is further activated by TNFa or TGFß. In all cases, p38 activation was reduced by SCIO-469, a potent and specific inhibitor of p38a activity. SCIO-469 does not directly block p38 activation, suggesting a feedback loop is interrupted when p38 kinase activity is inhibited in MDS cells. To determine the effects of cellular interactions, the MDS cell line was co-cultured with either BMSC, BMMNCs or both from normal donors, and TNFa and FasL secretion were measured after 3 days incubation. TNFa and FasL were detected in culture supernatants when the MDS cell line was co-cultured with BMMNC but not when co-cultured with BMSC. TNFa secretion by BMMNCs was dependent on MDS cell contact and was significantly inhibited by SCIO-469. The addition of BMSC to the MDS and BMMNC co-culture prevented TNFa elevation, suggesting BMSCs as a dominant source for anti-inflammatory signal(s). VEGF, FGF-ß, TGFß2, BDNF, TIMP-1, TIMP-2 and IL-6 secretion by BMSC was induced by MDS co-culture, whereas SCIO-469 blocked cytokine induction. To determine the effects of SCIO-469 and MDS clone-induced BM cytokine secretion on normal CD34+ proliferation, we co-cultured BMMNCs and BMSC in transwell inserts in the presence or absence of the MDS cell line with or without SCIO-469. CD34+ proliferation was assessed in cells cultured in outer wells. CD34+ progenitors proliferated in culture at the same rate as those co-cultured with BMSC, BMMNC and MDS for 6 days. At longer intervals, viability of progenitors cultured with the MDS line declined, whereas treatment with SCIO-469 abrogated the decrease in CD34+ viability. These results implicate p38a as a critical target in the induction of pro-apoptotic cytokines in MDS, and that selective inhibition of p38 by SCIO-469 may provide a novel therapeutic strategy for MDS.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-11-16
    Description: Transforming Growth Factor β (TGF-β) is a myelosuppressive cytokine that has been implicated in the ineffective hematopoiesis seen in myelodysplastic syndromes (MDS). Overactivation of TGF-β signaling in this disease was demonstrated immunohistochemically by significantly higher nuclear SMAD2 phosphorylation observed in 20 MDS bone marrows when compared with 7 non MDS anemic controls (P 〈 0.0001, 2 Tailed T Test, Image Pro Plus software). This data along with high levels of membrane-bound and plasma TGF-β observed in MDS patients in previous studies support the development of therapeutics targeting the TGF-β signaling pathways in this disease. SD-208 is a novel, potent and specific inhibitor of TGF-β Receptor I (TGFβ-RI) kinase. We demonstrate that SD-208 blocks the phosphorylation of SMAD2 in hematopoietic progenitors which are at the colony forming unit-erythroid (CFU-E) stage of differentiation. SD-208 also abrogates the G0/G1 cell cycle arrest induced by TGF-β in bone marrow progenitors. SD-208 treatment leads to reversal of the myelosuppressive effects of TGF-β on erythroid and myeloid colony formation from primary human CD34+ cells. Selectivity of SD-208 in inhibiting TGF-β-mediated effects on hematopoiesis was supported by similar results observed with siRNAs targeting SMAD2, a major component of the TGF-b signaling pathway. Finally, the efficacy of SD-208 in MDS was evaluated by treating bone marrow mononuclear cells from 15 patients with early low grade MDS. SD-208 treatment led to dose-dependent increases in erythroid and myeloid colonies after 14 days of in vitro culture. The effect was most notable in patients with high levels of activated SMAD-2, as assessed by immunohistochemical staining of bone marrow biopsies. Stimulation of hematopoiesis in MDS-derived marrow culture by SD-208 demonstrates a novel concept and potential therapeutic role for TGFβ-RI inhibition in this disease. Supported by VISN-17 grant, Harris Methodist Foundation Grant and ASCO YIA to AV
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-10-15
    Description: MDS is characterized by ineffective hematopoiesis that leads to peripheral cytopenias. Development of effective treatments has been impeded by limited insight into pathogenic pathways governing dysplastic growth of hematopoietic progenitors. We demonstrate that smad2, a downstream mediator of transforming growth factor–β (TGF-β) receptor I kinase (TBRI) activation, is constitutively activated in MDS bone marrow (BM) precursors and is overexpressed in gene expression profiles of MDS CD34+ cells, providing direct evidence of overactivation of TGF-β pathway in this disease. Suppression of the TGF-β signaling by lentiviral shRNA-mediated down-regulation of TBRI leads to in vitro enhancement of hematopoiesis in MDS progenitors. Pharmacologic inhibition of TBRI (alk5) kinase by a small molecule inhibitor, SD-208, inhibits smad2 activation in hematopoietic progenitors, suppresses TGF-β–mediated gene activation in BM stromal cells, and reverses TGF-β–mediated cell-cycle arrest in BM CD34+ cells. Furthermore, SD-208 treatment alleviates anemia and stimulates hematopoiesis in vivo in a novel murine model of bone marrow failure generated by constitutive hepatic expression of TGF-β1. Moreover, in vitro pharmacologic inhibition of TBRI kinase leads to enhancement of hematopoiesis in varied morphologic MDS subtypes. These data directly implicate TGF-β signaling in the pathobiology of ineffective hematopoiesis and identify TBRI as a potential therapeutic target in low-risk MDS.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...